Our Arabic Numeral system is written in base 10 What does that mean?

An Arabic numeral keeps track of how many 1's, 10's, 100's, 1000's, etc Where 1 =

10 =

100 =

1000 =

```
So, the numeral 3,456 = 3000 + 400 + 50 + 6 =
```

Ex: Expand the number 4729 into powers of 10.

4729 =

Ex: Expand the number 208 into powers of 10.

208 =

Note: 0×10^1 acts as a place holder

Try some on your own!

275 =

3647 =

2017 =

What if we had a different base than 10?

A numeral shows how many of each power of the base is in the number. Let's look at base 3 $\,$

In order to do this, we need to know the powers of 3

 $3^{0} = 1$ $3^{1} = 3$ $3^{2} =$

 $3^3 =$

3⁴ =

Using this let's count in base 3:

1,2, 3,...

In base 3, the number $3=1\times 3^1=10_3$

Notice the subscript 3 in the lower right hand corner so we know that this number is not the usual base 10 but written in base 3.

 $\begin{array}{ll} 4 = 1 \times 3^1 + 1 \times 1 = 11_3 \\ 5 = & \mbox{and} \ 6 = \\ 7 = & 8 = & 9 = \end{array}$

Example: Change the number 112_3 to base 10 $112_3 = 1 \times 3^2 + 1 \times 3 + 2 \times 1 = 1 \times 9 + 1 \times 3 + 2 \times 1 = 9 + 3 + 2 = 14$ So, our usual base 10 number 14 = 112_3 Example: Change the number 121_3 to base 10 $121_3 =$

Example: Change the number 1021_3 to base 10 $1021_3 =$

Example: Change the number 2111_3 to base 10 $2111_3 =$

Try some on your own: Change the following numbers to base 10 $211_3 = 2021_3 =$

23₅ =

 $1101_2 =$