• We defined The discriminant of a quadratic: $ax^2 + bx + c$ $D = b^2 - 4 \cdot a \cdot c$

• We defined The discriminant of a quadratic: $ax^2 + bx + c$

$$D = b^2 - 4 \cdot \mathbf{a} \cdot \mathbf{c}$$

We found that D could tell us the type of solutions we had to:

$$ax^2 + bx + c = 0$$

• We defined The discriminant of a quadratic: $ax^2 + bx + c$

 $D = b^2 - 4 \cdot a \cdot c$

We found that D could tell us the type of solutions we had to:

$$ax^2 + bx + c = 0$$

If $b^2 - 4 \cdot a \cdot c > 0$ then the quadratic equation has Two distinct Real solutions

• We defined The discriminant of a quadratic: $ax^2 + bx + c$

 $D = b^2 - 4 \cdot \mathbf{a} \cdot \mathbf{c}$

We found that D could tell us the type of solutions we had to:

$$ax^2 + bx + c = 0$$

- If $b^2 4 \cdot a \cdot c > 0$ then the quadratic equation has Two distinct Real solutions
- If $b^2 4 \cdot a \cdot c = 0$ then the quadratic equation has One distinct Real solutions, of multiplicity 2

• We defined The *discriminant* of a quadratic: $ax^2 + bx + c$

 $D = b^2 - 4 \cdot \mathbf{a} \cdot \mathbf{c}$

We found that D could tell us the type of solutions we had to:

$$ax^2 + bx + c = 0$$

- If $b^2 4 \cdot a \cdot c > 0$ then the quadratic equation has Two distinct Real solutions
- If $b^2 4 \cdot a \cdot c = 0$ then the quadratic equation has One distinct Real solutions, of multiplicity 2
- If $b^2 4 \cdot a \cdot c < 0$ then the quadratic equation has Two Complex solutions, which are complex conjugates

• We defined The *discriminant* of a quadratic: $ax^2 + bx + c$

 $D = b^2 - 4 \cdot \mathbf{a} \cdot \mathbf{c}$

We found that D could tell us the type of solutions we had to:

$$ax^2 + bx + c = 0$$

- If $b^2 4 \cdot a \cdot c > 0$ then the quadratic equation has <u>Two distinct Real solutions</u>
- If $b^2 4 \cdot a \cdot c = 0$ then the quadratic equation has One distinct Real solutions, of multiplicity 2
- If $b^2 4 \cdot a \cdot c < 0$ then the quadratic equation has <u>Two Complex solutions</u>, which are complex conjugates

Notice that, if we count multiplicities and complex solutions, there are always $\underline{Two\ solutions}$ to a quadratic equation.