• We saw that when we Add or Subtract two complex numbers of the form a + bi we get back another complex number.

• We saw that when we Add or Subtract two complex numbers of the form a + bi we get back another complex number.

Let's now look at multiplication with Complex Numbers

• We saw that when we Add or Subtract two complex numbers of the form a + bi we get back another complex number.

Let's now look at multiplication with Complex Numbers

Example: $(1 + 2i) \cdot (6 + 4i)$

• We saw that when we Add or Subtract two complex numbers of the form a + bi we get back another complex number. Let's now look at multiplication with Complex Numbers Because we need to both Add and Multiply, we need to \checkmark distribute **Example:** $(1 + 2i) \cdot (6 + 4i)$

We saw that when we Add or Subtract two complex numbers of the form a + bi we get back another complex number. Let's now look at multiplication with Complex Numbers Because we need to both Add and Multiply, we need to \checkmark distribute

Example: $(1 + 2i) \cdot (6 + 4i) = 6$

We saw that when we Add or Subtract two complex numbers of the form a + bi we get back another complex number. Let's now look at multiplication with Complex Numbers Because we need to both Add and Multiply, we need to \checkmark distribute **Example:** $(1 + 2i) \cdot (6 + 4i) = 6 + 4i$

We saw that when we Add or Subtract two complex numbers of the form a + bi we get back another complex number. Let's now look at multiplication with Complex Numbers Because we need to both Add and Multiply, we need to \checkmark distribute **Example:** $(1 + 2i) \cdot (6 + 4i) = 6 + 4i + 12i$

We saw that when we Add or Subtract two complex numbers of the form a + bi we get back another complex number. Let's now look at multiplication with Complex Numbers Because we need to both Add and Multiply, we need to \checkmark distribute **Example:** $(1 + 2i) \cdot (6 + 4i) = 6 + 4i + 12i$

• We saw that when we Add or Subtract two complex numbers of the form a + bi we get back another complex number. Let's now look at multiplication with Complex Numbers Because we need to both Add and Multiply, we need to \checkmark distribute

Example: $(1 + 2i) \cdot (6 + 4i) = 6 + 4i + 12i + 8i^2$

We saw that when we Add or Subtract two complex numbers of the form a + bi we get back another complex number. Let's now look at multiplication with Complex Numbers Because we need to both Add and Multiply, we need to restribute

Example: $(1 + 2i) \cdot (6 + 4i) = 6 + \underbrace{4i + 12i}_{16i} + 8i^2$

We saw that when we Add or Subtract two complex numbers of the form a + bi we get back another complex number. Let's now look at multiplication with Complex Numbers

Because we need to both Add and Multiply, we need to
distribute

Example: $(1 + 2i) \cdot (6 + 4i) = 6 + \underbrace{4i + 12i}_{16i} + 8 \underbrace{i^2}_{-1}$

We saw that when we Add or Subtract two complex numbers of the form a + bi we get back another complex number. Let's now look at multiplication with Complex Numbers Because we need to both Add and Multiply, we need to relative **Example:** $(1 + 2i) \cdot (6 + 4i) = 6 + \underbrace{4i + 12i}_{16i} + 8 \underbrace{i^2}_{-1} = -2 + 16i$

• We saw that when we Add or Subtract two complex numbers of the form a + bi we get back another complex number.

Let's now look at multiplication with Complex Numbers

Because we need to both Add and Multiply, we need to • distribute

Example:
$$(1 + 2i) \cdot (6 + 4i) = 6 + \underbrace{4i + 12i}_{16i} + 8 \underbrace{i^2}_{-1} = -2 + \underbrace{16i}_{16i}$$

Here, we multiplied two complex numbers the product was another complex number of the form a + bi

• We saw that when we Add or Subtract two complex numbers of the form a + b we get back another complex number.

Let's now look at multiplication with Complex Numbers

Because we need to both Add and Multiply, we need to • distribute

Example:
$$(1 + 2i) \cdot (6 + 4i) = 6 + \underbrace{4i + 12i}_{16i} + 8 \underbrace{i^2}_{-1} = -2 + \underbrace{16i}_{16i}$$

Here, we multiplied two complex numbers the product was another complex number of the form a + bi

Note 1: To multiply two complex numbers, we distribute and us that $\mathrm{i}^2=-1$

• We saw that when we Add or Subtract two complex numbers of the form a + bi we get back another complex number.

Let's now look at multiplication with Complex Numbers

Because we need to both Add and Multiply, we need to • distribute

Example:
$$(1 + 2i) \cdot (6 + 4i) = 6 + \underbrace{4i + 12i}_{16i} + 8 \underbrace{i^2}_{-1} = -2 + \underbrace{16i}_{16i}$$

Here, we multiplied two complex numbers the product was another complex number of the form a + bi

Note 1: To multiply two complex numbers, we distribute and us that $\mathrm{i}^2=-1$

Note 2: When we multiply two complex numbers, we get a complex number back (not something new!)