
Don’t Tell a Mathematician They Can’t Solve an Equation

In Example 9 we saw that there were no real solutions to:
x2 + 1 = 0

We ran into this problem a while ago

Before we invented negative numbers, we could not solve x + 1 = 0
This is why we invented new numbers, so we would be able to solve it!
Before we invented fraction, we could not solve 2x = 1
This is why we invented new numbers, so we would be able to solve it!
Now we cannot solve x2 + 1 = 0
We need to invent new numbers, so we can solve it!
Let’s try to solve this without the Quadratic Formula
We start by Subtracting 1 from both sides to get:

x2 = −1
Now we can Take the square root of both sides to get:
This means that x = ±

√
−1

The new number we invent, we will call i =
√
−1

With our new number, we can now solve the equation x2 + 1 = 0
Conclusion: The solutions to x2 + 1 = 0 are: x = ±i

http://coobermath.com/Quadratics/Solving_1_Variable/Quadratic_Formula/Example_9.pdf
http://coobermath.com/Review_and_Linear_Equations/Sets/Intro_to_number_sets.pdf
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Don’t Tell a Mathematician They Can’t Solve an Equation

Example: Find the solutions to:
x2 + 4 = 0

Subtracting 4 from each side, we get:

The next step to solve x2 = −4, we need to take the square root:
How do we take square root of −4? Do we need another new number?
We can re-write this in terms of i and not need another new number.
Let’s look at another example.
Example: Find the solutions to:

x2 + 3 = 0
Subtracting 3 from each side, we get:

The next step to solve x2 = −3, we need to take the square root:
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