Example: Find the distance between points (2,3) and (5,4)

Example: Find the distance between points (2, 3) and (5, 4)

Example: Find the distance between points (2, 3) and (5, 4) As we saw before we can compute the distance using:

distance = $\sqrt{(\Delta x)^2 + (\Delta y)^2}$

Example: Find the distance between points (2,3) and (5,4)• As we saw before we can compute the distance using: distance = $\sqrt{(\Delta x)^2 + (\Delta y)^2}$ We can compute Δx and Δy as: Δx Δv (5, 4)distance Δy Δx (2, 3)

Example: Find the distance between points (2,3) and (5,4)• As we saw before) we can compute the distance using: distance = $\sqrt{(\Delta x)^2 + (\Delta y)^2}$ We can compute Δx and Δy as: $\Delta x = 5 - 2 = 3$ Δv (5, 4)distance Δy $\Delta x = 3$ (2, 3)

Example: Find the distance between points (2,3) and (5,4)• As we saw before) we can compute the distance using: distance = $\sqrt{(\Delta x)^2 + (\Delta y)^2}$ We can compute Δx and Δy as: $\Delta x = 5 - 2 = 3$ $\Delta y = 4 - 3 = 1$ (5, 4)distance $\Delta y = 1$ $\Delta x = 3$ (2, 3)

Example: Find the distance between points (2,3) and (5,4)• As we saw before) we can compute the distance using: distance = $\sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(3)^2 + (1)^2}$ We can compute Δx and Δy as: $\Delta x = 5 - 2 = 3$ $\Delta y = 4 - 3 = 1$ (5, 4)distance $\Delta y = 1$ $\Delta x = 3$ (2, 3)

Example: Find the distance between points (2,3) and (5,4)• As we saw before) we can compute the distance using: distance = $\sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(3)^2 + (1)^2} = \sqrt{10}$ We can compute Δx and Δy as: $\Delta x = 5 - 2 = 3$ $\Delta y = 4 - 3 = 1$ distance $\sqrt{10}$ (5,4) $\Delta y = 1$ $\Delta x = 3$ (2, 3)

Example: Find the distance between points (2,3) and (5,4)• As we saw before) we can compute the distance using: distance = $\sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(3)^2 + (1)^2} = \sqrt{10}$ We can compute Δx and Δy as: $\Delta x = 5 - 2 = 3$ $\Delta y = 4 - 3 = 1$ distance $\sqrt{10}$ (5,4) $\Delta y = 1$ $\Delta x = 3$ (2, 3)

Conclusion: The distance between (2,3) and (5,4) is $\sqrt{10}$