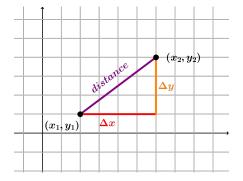
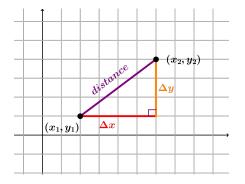
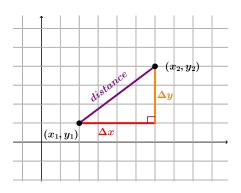

We saw one way to measure change from (x_1, y_1) to (x_2, y_2)

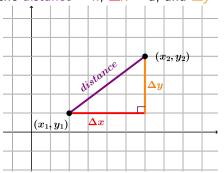

We saw one way to measure change from (x_1, y_1) to (x_2, y_2) We measured the change in x (Δx) and change in y (Δy)


We saw one way to measure change from (x_1, y_1) to (x_2, y_2) We measured the change in x (Δx) and change in y (Δy) We can also look at the distance between the points


We saw one way to measure change from (x_1, y_1) to (x_2, y_2) We measured the change in x (Δx) and change in y (Δy) We can also look at the distance between the points To find this distance, \bigcirc Recall the Pythagorean Theorem:

We saw one way to measure change from (x_1, y_1) to (x_2, y_2) We measured the change in x (Δx) and change in y (Δy) We can also look at the distance between the points To find this distance, **Precall** the Pythagorean Theorem: if *a* and *b* are the legs' lengths and *h* the hypotenuse of a right triangle, then

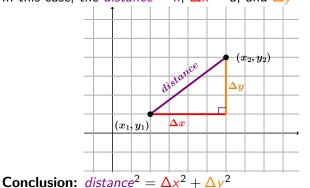
We saw one way to measure change from (x_1, y_1) to (x_2, y_2) We measured the change in x (Δx) and change in y (Δy) We can also look at the distance between the points To find this distance, **PRecall** the Pythagorean Theorem: if *a* and *b* are the legs' lengths and *h* the hypotenuse of a right triangle, then



$$h^2 = a^2 + b^2$$

We saw one way to measure change from (x_1, y_1) to (x_2, y_2) We measured the change in x (Δx) and change in y (Δy) We can also look at the distance between the points To find this distance, **PRecall** the Pythagorean Theorem: if *a* and *b* are the legs' lengths and *h* the hypotenuse of a right triangle, then

 $h^2 = a^2 + h^2$


In this case, the distance = h; $\Delta x = a$, and $\Delta y = b$

We saw one way to measure change from (x_1, y_1) to (x_2, y_2) We measured the change in x (Δx) and change in y (Δy) We can also look at the distance between the points To find this distance, **Precall** the Pythagorean Theorem: if *a* and *b* are the legs' lengths and *h* the hypotenuse of a right triangle, then

 $h^2 = a^2 + h^2$

In this case, the distance = h; $\Delta x = a$, and $\Delta y = b$

