Solving	the	quadratic	equation:	$x^2 + 3x + 2 = 0$:	

Recall: The Quadratic Formula says r_1 and r_2 are the roots of: $ax^2 + bx + c = 0$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of: $av^2 + bv + c = 0$

$$r_{1,2} = \frac{ax^2 + bx + c = 0}{-(b) \pm \sqrt{(b)^2 - 4ac}}$$

Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of:

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

$$r_{1,2} = \frac{-(3) \pm \sqrt{(3)^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1}$$

$$r_{1,2} = \frac{-(3) \pm \sqrt{(3)^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1}$$

Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of:

says
$$r_1$$
 and r_2 are the roots of
$$ax^2 + bx + c = 0$$

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

$$r_{1,2} = \frac{-(3) \pm \sqrt{(3)^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1}$$

$$= \frac{-(3) \pm \sqrt{(3)^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1}$$
$$= \frac{-3 \pm \sqrt{9 - 8}}{2}$$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of:

says
$$r_1$$
 and r_2 are the roots
$$ax^2 + bx + c = 0$$

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

$$r_{1,2} = \frac{-(3) \pm \sqrt{(3)^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1}$$

$$-3 + \sqrt{9 - 8}$$

$$r_{1,2} = \frac{-(3) \pm \sqrt{(3)^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1}$$
$$= \frac{-3 \pm \sqrt{9 - 8}}{2}$$

 $=\frac{-3\pm\sqrt{1}}{2}$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of:

e Quadratic Formula says
$$r_1$$
 and r_2 are the roots
$$ax^2 + bx + c = 0$$

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

$$r_{1,2} = \frac{-(3) \pm \sqrt{(3)^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1}$$

$$-3 \pm \sqrt{9 - 8}$$

$$r_{1,2} = \frac{-(3) \pm \sqrt{(3)^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1}$$
$$= \frac{-3 \pm \sqrt{9 - 8}}{2}$$

 $=\frac{-3\pm\sqrt{1}}{2}$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of:

says
$$r_1$$
 and r_2 are the roots $ax^2 + bx + c = 0$

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

$$r_{1,2} = \frac{-(3) \pm \sqrt{(3)^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1}$$

$$= \frac{-3 \pm \sqrt{9 - 8}}{2}$$

$$r_{1,2} = \frac{-(3) \pm \sqrt{(3)^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1}$$
$$= \frac{-3 \pm \sqrt{9 - 8}}{2}$$

$$= \frac{2}{2}$$

$$= \frac{-3 \pm \sqrt{1}}{2}$$

$$= \frac{-3 \pm 1}{2}$$

$$= \frac{-2}{2} \text{ and } \frac{-4}{2}$$

Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of:

says
$$r_1$$
 and r_2 are the roots $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(3) \pm \sqrt{(3)^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1}$ $= \frac{-3 \pm \sqrt{9 - 8}}{2}$

$$r_{1,2} = \frac{-(3) \pm \sqrt{(3)^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1}$$

$$= \frac{-3 \pm \sqrt{9 - 8}}{2}$$

$$= \frac{-3 \pm \sqrt{1}}{2}$$

 $=\frac{-2}{2}$ and $\frac{-4}{2}$ =-1 and -2

Recall: The Quadratic Formula says r_1 and r_2 are the roots of:

he Quadratic Formula says
$$r_1$$
 and r_2 are the roots of $ax^2 + bx + c = 0$

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

$$r_{1,2} = \frac{-(3) \pm \sqrt{(3)^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1}$$

$$= \frac{-3 \pm \sqrt{9 - 8}}{2}$$

$$= \frac{-3 \pm \sqrt{1}}{2}$$

$$r_{1,2} = \frac{-(3) \pm \sqrt{(3)^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1}$$

$$= \frac{-3 \pm \sqrt{9 - 8}}{2}$$

$$= \frac{-3 \pm \sqrt{1}}{2}$$

$$= \frac{-3 \pm 1}{2}$$

$$= \frac{-2}{2} \text{ and } \frac{-4}{2}$$

$$\begin{array}{c} -2 & \text{and} & 2 \\ = -1 \text{ and } -2 \end{array}$$
 The solutions to $x^2 + 3x + 2 = 0$ are: $x = r_{1,2} = -1, -2$