Solving the quadratic equation: $x^2 - 6x + 8 = 0$:

Solving the quadratic equation: $x^2 - 6x + 8 = 0$: Recall: The Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^2 + bx + c = 0$

Solving the quadratic equation: $x^2 - 6x + 8 = 0$: Recall: The Quadratic Formula says r_1 and r_2 are r_1 the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$

Solving the quadratic equation: $x^2 - 6x + 8 = 0$: Recall: The Quadratic Formula says r_1 and r_2 are r_1 the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$

Solving the quadratic equation: $x^2 - 6x + 8 = 0$: Recall: The Quadratic Formula says r_1 and r_2 are Quadratic of:

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

$$r_{1,2} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot 8}}{2 \cdot 1}$$

Solving the quadratic equation: $x^2 - 6x + 8 = 0$: Recall: The Quadratic Formula says r_1 and r_2 are the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot 8}}{2 \cdot 1}$

$$=\frac{2 \cdot 1}{2}$$

Solving the quadratic equation: $x^2 - 6x + 8 = 0$: Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^{2} + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot 8}}{2 \cdot 1}$ $=\frac{6\pm\sqrt{36-32}}{2}$ $=\frac{6\pm\sqrt{4}}{2}$

Solving the quadratic equation: $x^2 - 6x + 8 = 0$: Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot 8}}{2 \cdot 1}$ $=\frac{6\pm\sqrt{36-32}}{2}$ $=\frac{6\pm\sqrt{4}}{2}$ $=\frac{6\pm 2}{2}$

Solving the quadratic equation: $x^2 - 6x + 8 = 0$: Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^{2} + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot 8}}{2 \cdot 1}$ $=\frac{6\pm\sqrt{36-32}}{2}$ $=\frac{6\pm\sqrt{4}}{2}$ $=rac{6\pm2}{2}$ $=\frac{8}{2}$ and $\frac{4}{2}$

Solving the quadratic equation: $x^2 - 6x + 8 = 0$: Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot 8}}{2 \cdot 1}$ $=\frac{6\pm\sqrt{36-32}}{2}$ $=\frac{6\pm\sqrt{4}}{2}$ $=\frac{6\pm 2}{2}$ $=\frac{8}{2}$ and $\frac{4}{2}$ = 4 and 2

Solving the quadratic equation: $x^2 - 6x + 8 = 0$: Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^{2} + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot 8}}{2 \cdot 1}$ $=\frac{6\pm\sqrt{36-32}}{2}$ $=\frac{6\pm\sqrt{4}}{2}$ $=\frac{6\pm 2}{2}$ $=\frac{8}{2}$ and $\frac{4}{2}$ = 4 and 2 The solutions to $x^2 - 6x + 8 = 0$ are: $x = r_{1,2} = 4, 2$