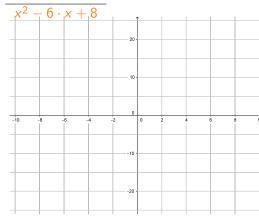
Example: Sketch the graph of:

$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

Example: Sketch the graph of:
$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

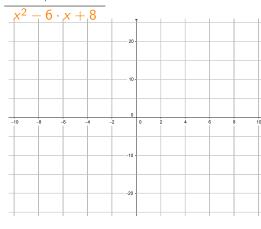
We need to find:



Example: Sketch the graph of:
$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

We need to find:

The y-int

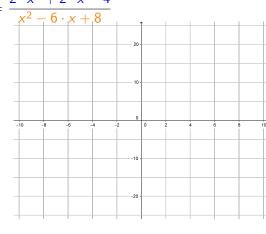


Example: Sketch the graph of:
$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

We need to find:

The y-int

The x-int



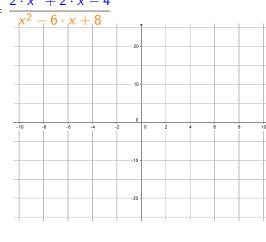
Example: Sketch the graph of:
$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

We need to find:

The y-int

The x-int

Vertical asymptotes



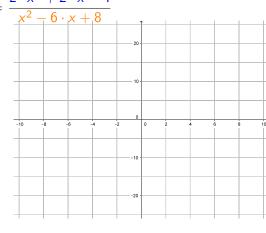
Example: Sketch the graph of:
$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

We need to find:

The y-int

The x-int

Vertical asymptotes



Graphing Rational Functions - Example 6 Example: Sketch the graph of: $f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$

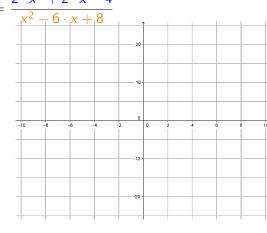
$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

We need to find:

The y-int: x = 0

The x-int

Vertical asymptotes



Example: Sketch the graph of:
$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$
We need to find:

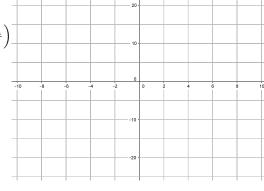
We need to find:

The y-int: x = 0

$$f(0) = \frac{2 \cdot 0^2 + 2 \cdot 0 - 4}{0^2 - 6 \cdot 0 + 8} = \frac{-1}{2} : \left(0, \frac{-1}{2}\right)^{-1}$$

The x-int

Vertical asymptotes



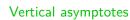
Example: Sketch the graph of:
$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$
We need to find:

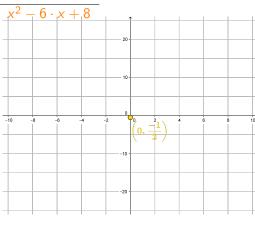
We need to find:

The y-int: x = 0

$$f(0) = \frac{2 \cdot 0^2 + 2 \cdot 0 - 4}{0^2 - 6 \cdot 0 + 8} = \frac{-1}{2} : \left(0, \frac{-1}{2}\right)^{-1}$$

The x-int





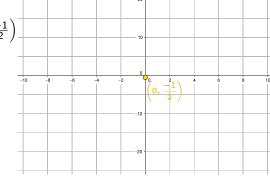
Example: Sketch the graph of:
$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$
We need to find:

We need to find:

The y-int: x = 0

$$f(0) = \frac{2 \cdot 0^2 + 2 \cdot 0 - 4}{0^2 - 6 \cdot 0 + 8} = \frac{-1}{2} : \left(0, \frac{-1}{2}\right)^{-1}$$

The x-int: y = f(x) = 0



Vertical asymptotes

Graphing Rational Functions - Example 6 Example: Sketch the graph of: $f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$

$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + .8}$$

We need to find:

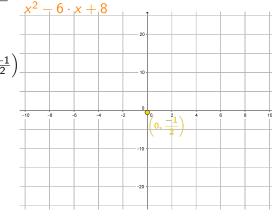
The y-int: x = 0

$$f(0) = \frac{2 \cdot 0^2 + 2 \cdot 0 - 4}{0^2 - 6 \cdot 0 + 8} = \frac{-1}{2} : \left(0, \frac{-1}{2}\right)^{-1}$$

The x-int: y = f(x) = 0

We solve:
$$0 = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

Vertical asymptotes



Graphing Rational Functions - Example 6 Example: Sketch the graph of: $f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{\frac{x^2 - 6 \cdot x + 8}{2}}$

$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

We need to find:

The *y*-int:
$$x = 0$$

$$f(0) = \frac{2 \cdot 0^2 + 2 \cdot 0 - 4}{0^2 - 6 \cdot 0 + 8} = \frac{-1}{2} : \left(0, \frac{-1}{2}\right)^{-1}$$

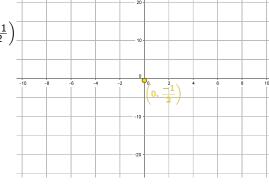
The x-int: y = f(x) = 0

We solve:
$$0 = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

We can by solving: $0 = 2 \cdot x^2 + 2 \cdot x - 4$

$$0 = 2 \cdot x^2 + 2 \cdot x - 4$$

Vertical asymptotes



Graphing Rational Functions - Example 6 Example: Sketch the graph of: $f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$

$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

We need to find:

The
$$y$$
-int: $x = 0$

$$f(0) = \frac{2 \cdot 0^2 + 2 \cdot 0 - 4}{0^2 - 6 \cdot 0 + 8} = \frac{-1}{2} : \left(0, \frac{-1}{2}\right)^{-1}$$

The x-int: y = f(x) = 0

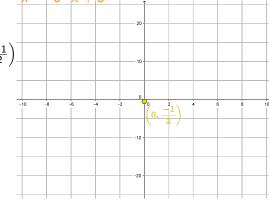
We solve:
$$0 = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

• We can by solving:

$$0 = 2 \cdot x^2 + 2 \cdot x - 4$$

This gives: x = 1, -2

Vertical asymptotes



Graphing Rational Functions - Example 6 Example: Sketch the graph of: $f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$

$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

We need to find:

The y-int: x = 0

$$f(0) = \frac{2 \cdot 0^2 + 2 \cdot 0 - 4}{0^2 - 6 \cdot 0 + 8} = \frac{-1}{2} : \left(0, \frac{-1}{2}\right)^{-1}$$

The x-int: y = f(x) = 0

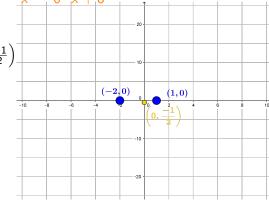
We solve: $0 = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 + 6 \cdot x + 8}$

• We can by solving:

$$0 = 2 \cdot x^2 + 2 \cdot x - 4$$

This gives: x = 1, -2

Vertical asymptotes



Example: Sketch the graph of:

$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

We need to find:

The y-int: x = 0

$$f(0) = \frac{2 \cdot 0^2 + 2 \cdot 0 - 4}{0^2 - 6 \cdot 0 + 8} = \frac{-1}{2} : \left(0, \frac{-1}{2}\right)^{-1}$$

The x-int: y = f(x) = 0

We solve:
$$0 = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

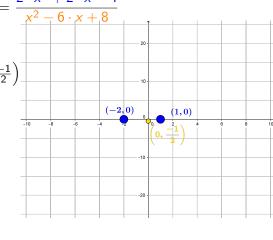
We can by solving: $0 = 2 \cdot x^2 + 2 \cdot x - 4$

$$0 = 2 \cdot x^2 + 2 \cdot x - 4$$

This gives: x = 1, -2

Vertical asymptotes:

$$x^2 - 6 \cdot x + 8 = 0$$



Example: Sketch the graph of:

$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

We need to find:

The *y*-int: x = 0

$$f(0) = \frac{2 \cdot 0^2 + 2 \cdot 0 - 4}{0^2 - 6 \cdot 0 + 8} = \frac{-1}{2} : \left(0, \frac{-1}{2}\right)^{-1}$$

The x-int: y = f(x) = 0

We solve:
$$0 = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

• We can by solving:

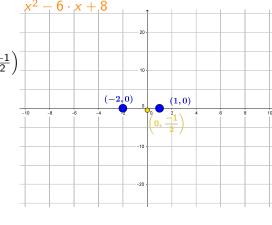
$$0 = 2 \cdot x^2 + 2 \cdot x - 4$$

This gives: x = 1, -2

Vertical asymptotes:

$$x^2 - 6 \cdot x + 8 = 0$$

Solving this polynomial gives:



Example: Sketch the graph of:

$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

(-2,0)

(1,0)

We need to find:

The *y*-int: x = 0

$$f(0) = \frac{2 \cdot 0^2 + 2 \cdot 0 - 4}{0^2 - 6 \cdot 0 + 8} = \frac{-1}{2} : \left(0, \frac{-1}{2}\right)^{-1}$$

The x-int: y = f(x) = 0

We solve:
$$0 = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

• We can by solving:

$$0 = 2 \cdot x^2 + 2 \cdot x - 4$$

This gives: x = 1, -2

Vertical asymptotes:

$$x^2 - 6 \cdot x + 8 = 0$$

Solving this polynomial gives:
$$x = 2, x = 4$$

Example: Sketch the graph of:

$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

We need to find:

The *y*-int:
$$x = 0$$

$$f(0) = \frac{2 \cdot 0^2 + 2 \cdot 0 - 4}{0^2 - 6 \cdot 0 + 8} = \frac{-1}{2} : \left(0, \frac{-1}{2}\right)^{-1}$$

The x-int: y = f(x) = 0

We solve:
$$0 = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

• We can by solving:

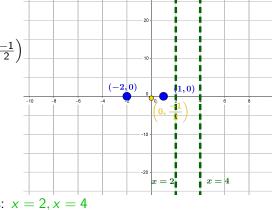
$$0 = 2 \cdot x^2 + 2 \cdot x - 4$$

This gives: x = 1, -2

Vertical asymptotes:

$$x^2 - 6 \cdot x + 8 = 0$$

Solving this polynomial gives: x = 2, x = 4



Example: Sketch the graph of:

$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

We need to find:

The y-int: x = 0

$$f(0) = \frac{2 \cdot 0^2 + 2 \cdot 0 - 4}{0^2 - 6 \cdot 0 + 8} = \frac{-1}{2} : \left(0, \frac{-1}{2}\right)^{-1}$$

The x-int: y = f(x) = 0

We solve:
$$0 = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

• We can by solving:

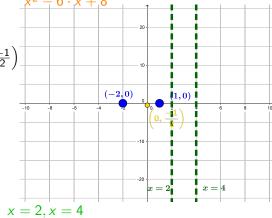
$$0 = 2 \cdot x^2 + 2 \cdot x - 4$$

This gives: x = 1, -2

Vertical asymptotes:

$$x^2 - 6 \cdot x + 8 = 0$$

Solving this polynomial gives:
$$x = 2, x = 4$$



Example: Sketch the graph of:

$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

We need to find:

The y-int: x = 0

$$f(0) = \frac{2 \cdot 0^2 + 2 \cdot 0 - 4}{0^2 - 6 \cdot 0 + 8} = \frac{-1}{2} : \left(0, \frac{-1}{2}\right)^{-1}$$

The x-int: y = f(x) = 0

We solve:
$$0 = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

• We can by solving:

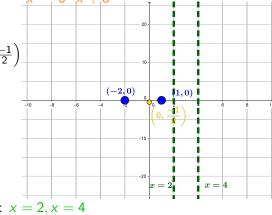
$$0 = 2 \cdot x^2 + 2 \cdot x - 4$$

This gives: x = 1, -2

Vertical asymptotes:

$$x^2 - 6 \cdot x + 8 = 0$$

Solving this polynomial gives:
$$x = 2, x = 4$$



Example: Sketch the graph of:

$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

(-2,0)

(1,0)

We need to find:

The
$$y$$
-int: $x = 0$

$$f(0) = \frac{2 \cdot 0^2 + 2 \cdot 0 - 4}{0^2 - 6 \cdot 0 + 8} = \frac{-1}{2} : \left(0, \frac{-1}{2}\right)$$

The
$$x$$
-int: $y = f(x) = 0$

We solve:
$$0 = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

• We can by solving:

$$0 = 2 \cdot x^2 + 2 \cdot x - 4$$

This gives: x = 1, -2

Vertical asymptotes:

$$x^2 - 6 \cdot x + 8 = 0$$

Solving this polynomial gives: x = 2, x = 4

We saw
$$\frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8} \approx \frac{2}{1} = 2$$
 since $dg(2x^2 + 2x - 4) = dg(x^2 - 6x + 8)$

Example: Sketch the graph of:

$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

We need to find:

The y-int: x = 0

$$f(0) = \frac{2 \cdot 0^2 + 2 \cdot 0 - 4}{0^2 - 6 \cdot 0 + 8} = \frac{-1}{2} : \left(0, \frac{-1}{2}\right)^{-1}$$

The x-int: y = f(x) = 0

We solve:
$$0 = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

• We can by solving:

$$0 = 2 \cdot x^2 + 2 \cdot x - 4$$

This gives: x = 1, -2

Vertical asymptotes:

$$x^2 - 6 \cdot x + 8 = 0$$

Solving this polynomial gives: x = 2, x = 4

We saw
$$\frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8} \approx \frac{2}{1} = 2$$
 since $dg(2x^2 + 2x - 4) = dg(x^2 - 6x + 8)$

Example: Sketch the graph of:

$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

We need to find:

The y-int: x = 0

$$f(0) = \frac{2 \cdot 0^2 + 2 \cdot 0 - 4}{0^2 - 6 \cdot 0 + 8} = \frac{-1}{2} : \left(0, \frac{-1}{2}\right)$$

The x-int: y = f(x) = 0

We solve:
$$0 = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

by solving:

$$0 = 2 \cdot x^2 + 2 \cdot x - 4$$

This gives: x = 1, -2

Vertical asymptotes: $x^2 - 6 \cdot x + 8 = 0$

Solving this polynomial gives:
$$x = 2, x = 4$$

The End Behavior: $x \to \pm \infty$ Called a Horizontal Asymptote

We saw
$$\frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8} \approx \frac{2}{1} = 2$$
 since $dg(2x^2 + 2x - 4) = dg(x^2 - 6x + 8)$

Like Polynomials we need to check if f(x)>0 or f(x)<0 on some intervals

Example: Sketch the graph of:

$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

We need to find:

The y-int:
$$x = 0$$

 $f(0) = \frac{2 \cdot 0^2 + 2 \cdot 0 - 4}{0^2 - 6 \cdot 0 + 8} = \frac{-1}{2} : \left(0, \frac{-1}{2}\right)$

The x-int:
$$y = f(x) = 0$$

We solve:
$$0 = \frac{2 \cdot x^2 + 2 \cdot x - 4}{2 \cdot x^2 + 2 \cdot x - 4}$$

We solve:
$$0 = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

We can by solving:

$$0 = 2 \cdot x^2 + 2 \cdot x - 4$$
This gives: $x = 1, -2$

Vertical asymptotes:

$$x^2 - 6 \cdot x + 8 = 0$$

Solving this polynomial gives:
$$x = 2, x = 4$$

The End Behavior:
$$x \to \pm \infty$$
 Called a Horizontal Asymptote

We saw $\frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8} \approx \frac{2}{1} = 2$ since $dg(2x^2 + 2x - 4) = dg(x^2 - 6x + 8)$

Example: Sketch the graph of:

$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

-2,0) -1 -10,0)

We need to find:

The y-int:
$$x = 0$$

 $f(0) = \frac{2 \cdot 0^2 + 2 \cdot 0 - 4}{0^2 - 6 \cdot 0 + 8} = \frac{-1}{2} : \left(0, \frac{-1}{2}\right)^{-1}$

The x-int:
$$y = f(x) = 0$$

We solve:
$$0 - \frac{2 \cdot x^2 + 2 \cdot x - 4}{2 \cdot x^2 + 2 \cdot x - 4}$$

We solve:
$$0 = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

• We can by solving:

$$0 = 2 \cdot x^2 + 2 \cdot x - 4$$
This gives: $x = 1, -2$

Vertical asymptotes:

$$x^2 - 6 \cdot x + 8 = 0$$

Solving this polynomial gives:
$$x = 2, x = 4$$

The End Rehavior: $x \rightarrow +\infty$ Called a Harizontal Asymptotic Property of the End Rehavior: $x \rightarrow +\infty$ Called a Harizontal Asymptotic Property of the End Rehavior: $x \rightarrow +\infty$ Called a Harizontal Asymptotic Property of the End Rehavior: $x \rightarrow +\infty$ Called a Harizontal Asymptotic Property of the End Rehavior: $x \rightarrow +\infty$ Called a Harizontal Asymptotic Property of the End Rehavior: $x \rightarrow +\infty$ Called a Harizontal Asymptotic Property of the End Rehavior: $x \rightarrow +\infty$ Called a Harizontal Asymptotic Property of the End Rehavior: $x \rightarrow +\infty$ Called a Harizontal Asymptotic Property of the End Rehavior: $x \rightarrow +\infty$ Called a Harizontal Asymptotic Property of the End Rehavior: $x \rightarrow +\infty$ Called a Harizontal Asymptotic Property of the End Rehavior: $x \rightarrow +\infty$ Called a Harizontal Asymptotic Property of the End Rehavior: $x \rightarrow +\infty$ Called a Harizontal Asymptotic Property of the End Rehavior: $x \rightarrow +\infty$ Called Asymptotic Property of the End Rehavior Property of

The End Behavior:
$$x \to \pm \infty$$
 Called a Horizontal Asymptote

We saw $\frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8} \approx \frac{2}{1} = 2$ since $dg(2x^2 + 2x - 4) = dg(x^2 - 6x + 8)$

Example: Sketch the graph of:

$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

-2,0) -1,0

We need to find:

The y-int:
$$x = 0$$

 $f(0) = \frac{2 \cdot 0^2 + 2 \cdot 0 - 4}{0^2 - 6 \cdot 0 + 8} = \frac{-1}{2} : \left(0, \frac{-1}{2}\right)^{-1}$

The x-int:
$$y = f(x) = 0$$

We solve:
$$0 = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

We can by solving:

$$0 = 2 \cdot x^2 + 2 \cdot x - 4$$
This gives: $x = 1, -2$

Vertical asymptotes: $x^2 - 6 \cdot x + 8 = 0$

$$x^2 - 6 \cdot x + 8 = 0$$
Solving this polynomial gives: $x = 2, x = 4$

The End Behavior: $x \to \pm \infty$ Called a Horizontal Asymptote

We saw
$$\frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8} \approx \frac{2}{1} = 2$$
 since $dg(2x^2 + 2x - 4) = dg(x^2 - 6x + 8)$

Example: Sketch the graph of:

$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

(-2,0)

We need to find:

The
$$y$$
-int: $x = 0$

$$f(0) = \frac{2 \cdot 0^2 + 2 \cdot 0 - 4}{0^2 - 6 \cdot 0 + 8} = \frac{-1}{2} : \left(0, \frac{-1}{2}\right)$$
The x-int: $y = f(x) = 0$

We solve:
$$0 = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 + 6 \cdot x + 9}$$

$$0 = 2 \cdot x^2 + 2 \cdot x - 4$$

This gives: $x = 1, -2$

Vertical asymptotes:

$$x^2 - 6 \cdot x + 8 = 0$$
Solving this polynomial gives: $x = 2, x = 4$

The End Behavior: $x \to \pm \infty$ Called a Horizontal Asymptote

We saw
$$\frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8} \approx \frac{2}{1} = 2$$
 since $dg(2x^2 + 2x - 4) = dg(x^2 - 6x + 8)$

Example: Sketch the graph of:

$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

(1.5)

We need to find:

The
$$y$$
-int: $x = 0$

$$f(0) = \frac{2 \cdot 0^2 + 2 \cdot 0 - 4}{0^2 - 6 \cdot 0 + 8} = \frac{-1}{2} : \left(0, \frac{-1}{2}\right)$$

The
$$x$$
-int: $y = f(x) = 0$

We solve:
$$0 = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

We can by solving:

$$0 = 2 \cdot x^2 + 2 \cdot x - 4$$

This gives: x = 1, -2Vertical asymptotes:

$$x^2 - 6 \cdot x + 8 = 0$$

Solving this polynomial gives: x = 2, x = 4

The End Behavior:
$$x \to \pm \infty$$
 Called a Horizontal Asymptote

We saw $\frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8} \approx \frac{2}{1} = 2$ since $dg(2x^2 + 2x - 4) = dg(x^2 - 6x + 8)$

Example: Sketch the graph of:

$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

(1.5, 2.8)

We need to find:

The y-int:
$$x = 0$$

$$f(0) = \frac{2 \cdot 0^2 + 2 \cdot 0 - 4}{0^2 - 6 \cdot 0 + 8} = \frac{-1}{2} : \left(0, \frac{-1}{2}\right)$$

The x-int: y = f(x) = 0

We solve:
$$0 = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

We can by solving: $0 = 2 \cdot x^2 + 2 \cdot x - 4$

$$0 = 2 \cdot x^2 + 2 \cdot x - 4$$

This gives: $x = 1, -2$

Vertical asymptotes:

$$x^2 - 6 \cdot x + 8 = 0$$
Solving this polynomial gives: $x = 2, x = 4$

The End Behavior: $x \to \pm \infty$ Called a Horizontal Asymptote

We saw
$$\frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8} \approx \frac{2}{1} = 2$$
 since $dg(2x^2 + 2x - 4) = dg(x^2 - 6x + 8)$

Example: Sketch the graph of:

$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

(1.5, 2.8)

We need to find:

The y-int: x = 0

$$f(0) = \frac{2 \cdot 0^2 + 2 \cdot 0 - 4}{0^2 - 6 \cdot 0 + 8} = \frac{-1}{2} : \left(0, \frac{-1}{2}\right)$$

The x-int: y = f(x) = 0

We solve:
$$0 = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

We can by solving: $0 = 2 \cdot x^2 + 2 \cdot x - 4$

$$0 = 2 \cdot x^2 + 2 \cdot x - 4$$

This gives: $x = 1, -2$

Vertical asymptotes:

$$x^2 - 6 \cdot x + 8 = 0$$
Solving this polynomial gives: $x = 2, x = 4$

The End Behavior: $x \to \pm \infty$ Called a Horizontal Asymptote

• We saw $\frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8} \approx \frac{2}{1} = 2$ since $dg(2x^2 + 2x - 4) = dg(x^2 - 6x + 8)$

Example: Sketch the graph of:

$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

(1.5, 2.8)

We need to find:

The y-int:
$$x = 0$$

$$f(0) = \frac{2 \cdot 0^2 + 2 \cdot 0 - 4}{0^2 - 6 \cdot 0 + 8} = \frac{-1}{2} : \left(0, \frac{-1}{2}\right)^{-1}$$

The x-int: y = f(x) = 0

We solve:
$$0 = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

We can by solving: $0 = 2 \cdot x^2 + 2 \cdot x - 4$

This gives:
$$x = 1, -2$$

Vertical asymptotes:

$$x^2 - 6 \cdot x + 8 = 0$$
Solving this polynomial gives: $x = 2, x = 4$

The End Behavior: $x \to \pm \infty$ Called a Horizontal Asymptote

We saw $\frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8} \approx \frac{2}{1} = 2$ since $dg(2x^2 + 2x - 4) = dg(x^2 - 6x + 8)$

Example: Sketch the graph of:

$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

(1.5, 2.8)

We need to find:

The y-int:
$$x = 0$$

$$f(0) = \frac{2 \cdot 0^2 + 2 \cdot 0 - 4}{0^2 - 6 \cdot 0 + 8} = \frac{-1}{2} : \left(0, \frac{-1}{2}\right)$$

The x-int: y = f(x) = 0

We solve:
$$0 = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

by solving:

$$0 = 2 \cdot x^2 + 2 \cdot x - 4$$

This gives: x = 1, -2Vertical asymptotes:

$$x^2 - 6 \cdot x + 8 = 0$$

Solving this polynomial gives: x = 2, x = 4

The End Behavior:
$$x \to \pm \infty$$
 Called a Horizontal Asymptote

We saw $\frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8} \approx \frac{2}{1} = 2$ since $dg(2x^2 + 2x - 4) = dg(x^2 - 6x + 8)$

Example: Sketch the graph of:

$$f(x) = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

(1.5, 2.8)

We need to find:

The y-int:
$$x = 0$$

$$f(0) = \frac{2 \cdot 0^2 + 2 \cdot 0 - 4}{0^2 - 6 \cdot 0 + 8} = \frac{-1}{2} : \left(0, \frac{-1}{2}\right)^{-1}$$

The x-int: y = f(x) = 0

We solve:
$$0 = \frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8}$$

by solving: $0 = 2 \cdot x^2 + 2 \cdot x - 4$

This gives:
$$x = 1, -2$$

Vertical asymptotes: $x^2 - 6 \cdot x + 8 = 0$

Solving this polynomial gives:
$$x = 2, x = 4$$

The End Behavior: $x \to \pm \infty$ Called a Horizontal Asymptote

• We saw $\frac{2 \cdot x^2 + 2 \cdot x - 4}{x^2 - 6 \cdot x + 8} \approx \frac{2}{1} = 2$ since $dg(2x^2 + 2x - 4) = dg(x^2 - 6x + 8)$