Recall: The Quadratic Formula says r_1 and r_2 are the roots of: $ax^2 + bx + c = 0$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of: $ax^2 + bx + c = 0$ $(b) + \sqrt{(b)^2 - 4ac}$

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of:

says
$$r_1$$
 and r_2 are the roots of $ax^2 + bx + c = 0$

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

$$r_{1,2} = \frac{-(1) \pm \sqrt{(1)^2 - 4 \cdot 1 \cdot -2}}{2 \cdot 1}$$

$$\pm \sqrt{(1)^2 - 4 \cdot 1 \cdot - 1}$$

$$2 \cdot 1$$

Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of:

says
$$r_1$$
 and r_2 are the roots
$$ax^2 + bx + c = 0$$

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

$$r_{1,2} = \frac{-(1) \pm \sqrt{(1)^2 - 4 \cdot 1 \cdot -2}}{2 \cdot 1}$$

$$r_{1,2} = \frac{-(1) \pm \sqrt{(1)^2 - 4 \cdot 1 \cdot -2}}{\frac{2 \cdot 1}{2}}$$
$$= \frac{-1 \pm \sqrt{1 + 8}}{2}$$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of:

e Quadratic Formula says
$$r_1$$
 and r_2 are the root $ax^2+bx+c=0$
$$r_{1,2}=\frac{-(b)\pm\sqrt{(b)^2-4ac}}{2a}$$

$$r_{1,2}=\frac{-(1)\pm\sqrt{(1)^2-4\cdot1\cdot-2}}{2\cdot1}$$

$$-1+\sqrt{1+8}$$

$$r_{1,2} = \frac{-(1) \pm \sqrt{(1)^2 - 4 \cdot 1 \cdot -2}}{\frac{2 \cdot 1}{2}}$$
$$= \frac{-1 \pm \sqrt{1 + 8}}{2}$$

 $=\frac{-1\pm\sqrt{9}}{2}$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of:

the Quadratic Formula says
$$r_1$$
 and r_2 are the root $ax^2 + bx + c = 0$

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

$$r_{1,2} = \frac{-(1) \pm \sqrt{(1)^2 - 4 \cdot 1 \cdot -2}}{2 \cdot 1}$$

$$= \frac{-1 \pm \sqrt{1+8}}{2}$$

 $=\frac{-1\pm\sqrt{9}}{2}$

$$r_{1,2} = \frac{\frac{2a}{-(1) \pm \sqrt{(1)^2 - 4 \cdot 1 \cdot -2}}}{\frac{2 \cdot 1}{2}}$$
$$= \frac{-1 \pm \sqrt{1+8}}{2}$$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of:

$$r_{1,2} = \frac{ax^2 + bx + c = 0}{-(b) \pm \sqrt{(b)^2 - 4ac}}$$
$$-(1) \pm \sqrt{(1)^2 - 4 \cdot 1}$$

$$r_{1,2} = \frac{-(1) \pm \sqrt{(1)^2 - 4 \cdot 1}}{2a}$$

$$r_{1,2} = \frac{-(1) \pm \sqrt{(1)^2 - 4 \cdot 1}}{2 \cdot 1}$$

$$r_{1,2} = rac{-(1) \pm \sqrt{(1)^2 - 4 \cdot 1 \cdot -2}}{2 \cdot 1} = rac{-1 \pm \sqrt{1 + 8}}{2} = rac{-1 \pm \sqrt{9}}{2}$$

$$= \frac{2}{2}$$

$$= \frac{-1 \pm 3}{2}$$

$$= \frac{2}{2} \text{ and } \frac{-4}{2}$$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of:

$$r_{1,2} = \frac{ax^2 + bx + c = 0}{-(b) \pm \sqrt{(b)^2 - 4ac}}$$

$$r_{1,2} = \frac{\frac{(b) \pm \sqrt{(b)^2 + 4ac}}{2a}}{r_{1,2}}$$

$$r_{1,2} = \frac{-(1) \pm \sqrt{(1)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1}$$

$$r_{1,2} = \frac{-(1) \pm \sqrt{(1)^2 - 4 \cdot 1 \cdot -2}}{\frac{2 \cdot 1}{2}}$$
$$= \frac{-1 \pm \sqrt{1+8}}{2}$$

$$= \frac{2}{2}$$

$$= \frac{-1 \pm \sqrt{9}}{2}$$

$$= \frac{-1 \pm 3}{2}$$

$$= \frac{2}{2} \text{ and } \frac{-4}{2}$$

$$= 1 \text{ and } -2$$

Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of:

re Quadratic Formula says
$$r_1$$
 and r_2 are the roots $ax^2 + bx + c = 0$
$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

$$r_{1,2} = \frac{-(1) \pm \sqrt{(1)^2 - 4 \cdot 1 \cdot -2}}{2 \cdot 1}$$

$$= \frac{-1 \pm \sqrt{1+8}}{2}$$

$$-1 \pm \sqrt{9}$$

$$r_{1,2} = \frac{-(1) \pm \sqrt{(1)^2 - 4 \cdot 1 \cdot -2}}{2 \cdot 1}$$

$$= \frac{-1 \pm \sqrt{1 + 8}}{2}$$

$$= \frac{-1 \pm \sqrt{9}}{2}$$

$$= \frac{-1 \pm 3}{2}$$

$$= \frac{2}{2} \text{ and } \frac{-4}{2}$$

= 1 and -2The solutions to $x^2 + x - 2 = 0$ are: $x = r_{1,2} = 1, -2$