Recall: The Quadratic Formula says  $r_1$  and  $r_2$  are the roots of:  $ax^2 + bx + c = 0$ 

Recall: The Quadratic Formula says  $r_1$  and  $r_2$  are the roots of:  $ax^2 + bx + c = 0$   $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ 

Recall: The Quadratic Formula says  $r_1$  and  $r_2$  are the roots of:  $ax^2 + bx + c = 0$   $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ 

Recall: The  $\bigcirc$  Quadratic Formula says  $r_1$  and  $r_2$  are  $\bigcirc$  the roots of:

says 
$$r_1$$
 and  $r_2$  are the roots of: 
$$ax^2 + bx + c = 0$$

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

$$r_{1,2} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot -27}}{2 \cdot 1}$$

$$r_{1,2} = \frac{1}{2a}$$

$$r_{1,2} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot -2}}{2 \cdot 1}$$

Recall: The  $\bigcirc$  Quadratic Formula says  $r_1$  and  $r_2$  are  $\bigcirc$  the roots of:

says 
$$r_1$$
 and  $r_2$  are the roots of  $ax^2 + bx + c = 0$ 

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

$$r_{1,2} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot -2}}{2 \cdot 1}$$

$$= \frac{6 \pm \sqrt{36 + 108}}{2}$$

$$r_{1,2} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot -27}}{2 \cdot 1}$$

Recall: The  $\bigcirc$  Quadratic Formula says  $r_1$  and  $r_2$  are  $\bigcirc$  the roots of:

the Quadratic Formula says 
$$r_1$$
 and  $r_2$  are the roots of  $ax^2+bx+c=0$  
$$r_{1,2}=\frac{-(b)\pm\sqrt{(b)^2-4ac}}{2a}$$
 
$$r_{1,2}=\frac{-(-6)\pm\sqrt{(-6)^2-4\cdot1\cdot-2ac}}{2\cdot1}$$
  $6\pm\sqrt{36+108}$ 

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

$$r_{1,2} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot -27}}{2 \cdot 1}$$

$$= \frac{6 \pm \sqrt{36 + 108}}{2}$$

$$= \frac{6 \pm \sqrt{144}}{2}$$

Recall: The Quadratic Formula says  $r_1$  and  $r_2$  are the roots of:

the Quadratic Formula says 
$$r_1$$
 and  $r_2$  are the roots of: 
$$ax^2 + bx + c = 0$$
 
$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$
 
$$r_{1,2} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot -27}}{2 \cdot 1}$$
 
$$6 \pm \sqrt{\frac{26 + 109}{1000}}$$

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

$$r_{1,2} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 1}}{2 \cdot 1}$$

$$= \frac{6 \pm \sqrt{36 + 108}}{2}$$

Recall: The Quadratic Formula says  $r_1$  and  $r_2$  are the roots of:

The Quadratic Formula says 
$$r_1$$
 and  $r_2$  are the roots of  $ax^2 + bx + c = 0$ 

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

$$r_{1,2} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot -2a}}{2 \cdot 1}$$

$$= \frac{6 \pm \sqrt{36 + 108}}{2}$$

$$r_{1,2} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot -27}}{2 \cdot 1}$$

$$= \frac{6 \pm \sqrt{36 + 108}}{2}$$

$$= \frac{6 \pm \sqrt{144}}{2}$$

$$= \frac{2}{2}$$

$$= \frac{6 \pm 12}{2}$$

$$= \frac{18}{2} \text{ and } \frac{-6}{2}$$

Recall: The Quadratic Formula says  $r_1$  and  $r_2$  are the roots of:

e Quadratic Formula says 
$$r_1$$
 and  $r_2$  are the roots of: 
$$ax^2 + bx + c = 0$$

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

$$r_{1,2} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot -27}}{2 \cdot 1}$$

$$= \frac{6 \pm \sqrt{36 + 108}}{2}$$

$$= \frac{6 \pm \sqrt{144}}{2}$$

$$= \frac{6 \pm \sqrt{144}}{2}$$

$$= \frac{6 \pm 12}{2}$$

$$= \frac{18}{2} \text{ and } \frac{-6}{2}$$

$$= 9 \text{ and } -3$$

Recall: The  $\bigcirc$  Quadratic Formula says  $r_1$  and  $r_2$  are  $\bigcirc$  the roots of:

ne Quadratic Formula says 
$$r_1$$
 and  $r_2$  are the roots of: 
$$ax^2 + bx + c = 0$$

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

$$r_{1,2} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot -27}}{2 \cdot 1}$$

$$= \frac{6 \pm \sqrt{36 + 108}}{2}$$

$$= \frac{6 \pm \sqrt{144}}{2}$$

$$r_{1,2} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot -2}}{2 \cdot 1}$$

$$= \frac{6 \pm \sqrt{36 + 108}}{2}$$

$$= \frac{6 \pm \sqrt{144}}{2}$$

$$= \frac{6 \pm 12}{2}$$

$$= \frac{18}{2} \text{ and } \frac{-6}{2}$$

= 9 and -3The solutions to  $x^2 - 6x - 27 = 0$  are:  $x = r_{1,2} = 9, -3$