We want to write $x^2-7x+10$ in factored form: $x^2-7x+10=(x+s)\cdot(x+t)$

We want to write $x^2 - 7x + 10$ in factored form:

 $x^2 - 7x + 10 = (x+s) \cdot (x+t)$

So that s + t = -7 and $s \cdot t = 10$

We want to write $x^2 - 7x + 10$ in factored form: $x^2 - 7x + 10 = (x + s) \cdot (x + t)$ So that s + t = -7 and $s \cdot t = 10$ Factors of 10 are: $1 \cdot 10 = 10$ $-1 \cdot (-10) = 10$ $2 \cdot 5 = 10$ $-2 \cdot (-5) = 10$

We want to write $x^2 - 7x + 10$ in factored form: $x^2 - 7x + 10 = (x + s) \cdot (x + t)$ So that s + t = -7 and $s \cdot t = 10$ Factors of 10 are: $1 \cdot 10 = 10$ $-1 \cdot (-10) = 10$ $2 \cdot 5 = 10$ $-2 \cdot (-5) = 10$ and -2 + (-5) = -7

We want to write $x^2 - 7x + 10$ in factored form: $x^2 - 7x + 10 = (x + s) \cdot (x + t)$ So that s + t = -7 and $s \cdot t = 10$ Factors of 10 are: $1 \cdot 10 = 10$ $-1 \cdot (-10) = 10$ $2 \cdot 5 = 10$ $-2 \cdot (-5) = 10$ and -2 + (-5) = -7s, t = -2, -5

We want to write $x^2 - 7x + 10$ in factored form: $x^2 - 7x + 10 = (x+s) \cdot (x+t)$ So that s + t = -7 and $s \cdot t = 10$ Factors of 10 are: $1 \cdot 10 = 10$ $-1 \cdot (-10) = 10$ $2 \cdot 5 = 10$ $-2 \cdot (-5) = 10$ and -2 + (-5) = -7s, t = -2, -5So, factoring $x^2 - 7x + 10$ we get:

We want to write $x^2 - 7x + 10$ in factored form: $x^2 - 7x + 10 = (x+s) \cdot (x+t)$ So that s + t = -7 and $s \cdot t = 10$ Factors of 10 are: $1 \cdot 10 = 10$ $-1 \cdot (-10) = 10$ $2 \cdot 5 = 10$ $-2 \cdot (-5) = 10$ and -2 + (-5) = -7s, t = -2, -5So, factoring $x^2 - 7x + 10$ we get: $x^{2} - 7x + 10 = (x - 2) \cdot (x - 5)$

We want to write $x^2 - 7x + 10$ in factored form: $x^2 - 7x + 10 = (x+s) \cdot (x+t)$ So that s + t = -7 and $s \cdot t = 10$ Factors of 10 are: $1 \cdot 10 = 10$ $-1 \cdot (-10) = 10$ $2 \cdot 5 = 10$ $-2 \cdot (-5) = 10$ and -2 + (-5) = -7s, t = -2, -5So, factoring $x^2 - 7x + 10$ we get: $x^{2} - 7x + 10 = (x - 2) \cdot (x - 5)$

Remember, we want to solve:

$$0 = x^2 - 7x + 10 = (x - 2) \cdot (x - 5)$$

We want to write $x^2 - 7x + 10$ in factored form: $x^2 - 7x + 10 = (x+s) \cdot (x+t)$ So that s + t = -7 and $s \cdot t = 10$ Factors of 10 are: $1 \cdot 10 = 10$ $-1 \cdot (-10) = 10$ $2 \cdot 5 = 10$ $-2 \cdot (-5) = 10$ and -2 + (-5) = -7s, t = -2, -5So, factoring $x^2 - 7x + 10$ we get: $x^{2} - 7x + 10 = (x - 2) \cdot (x - 5)$ Remember, we want to solve:

$$0=x^2-7x+10=(x-2)\cdot(x-5)$$
 Using \checkmark The Zero Product Property we get $x-2=0$ or $x-5=0$

We want to write $x^2 - 7x + 10$ in factored form: $x^{2} - 7x + 10 = (x + s) \cdot (x + t)$ So that s + t = -7 and $s \cdot t = 10$ Factors of 10 are: $1 \cdot 10 = 10$ $-1 \cdot (-10) = 10$ $2 \cdot 5 = 10$ $-2 \cdot (-5) = 10$ and -2 + (-5) = -7s, t = -2, -5So, factoring $x^2 - 7x + 10$ we get: $x^{2} - 7x + 10 = (x - 2) \cdot (x - 5)$ Remember, we want to solve: $0 = x^2 - 7x + 10 = (x - 2) \cdot (x - 5)$

Using The Zero Product Property we get x - 2 = 0 or x - 5 = 0The solutions to $0 = x^2 - 7x + 10$ are x = 2, 5