At first glance, it seems like:

$$\sqrt{x^2} = x$$

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example: If x = 2

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If x = 2, then $\sqrt{x^2}$

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If
$$x = 2$$
, then $\sqrt{x^2} = \sqrt{2^2} = \sqrt{4}$

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If
$$x = 2$$
, then $\sqrt{x^2} = \sqrt{2^2} = \sqrt{4} = 2$

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If x = 2, then $\sqrt{x^2} = \sqrt{2^2} = \sqrt{4} = 2$: Looks true here!

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If x = 2, then $\sqrt{x^2} = \sqrt{2^2} = \sqrt{4} = 2$: Looks true here! If x = 3

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If x = 2, then $\sqrt{x^2} = \sqrt{2^2} = \sqrt{4} = 2$: Looks true here! If x = 3, then $\sqrt{x^2}$

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If x = 2, then $\sqrt{x^2} = \sqrt{2^2} = \sqrt{4} = 2$: Looks true here! If x = 3, then $\sqrt{x^2} = \sqrt{3^2} = \sqrt{9}$

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If x = 2, then $\sqrt{x^2} = \sqrt{2^2} = \sqrt{4} = 2$: Looks true here! If x = 3, then $\sqrt{x^2} = \sqrt{3^2} = \sqrt{9} = 3$

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If x = 2, then $\sqrt{x^2} = \sqrt{2^2} = \sqrt{4} = 2$: Looks true here! If x = 3, then $\sqrt{x^2} = \sqrt{3^2} = \sqrt{9} = 3$: Looks true here!

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If x = 2, then $\sqrt{x^2} = \sqrt{2^2} = \sqrt{4} = 2$: Looks true here! If x = 3, then $\sqrt{x^2} = \sqrt{3^2} = \sqrt{9} = 3$: Looks true here!

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If x = 2, then $\sqrt{x^2} = \sqrt{2^2} = \sqrt{4} = 2$: Looks true here! If x = 3, then $\sqrt{x^2} = \sqrt{3^2} = \sqrt{9} = 3$: Looks true here! If x = 5

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If x = 2, then $\sqrt{x^2} = \sqrt{2^2} = \sqrt{4} = 2$: Looks true here! If x = 3, then $\sqrt{x^2} = \sqrt{3^2} = \sqrt{9} = 3$: Looks true here! If x = 5, then $\sqrt{x^2}$

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If x = 2, then $\sqrt{x^2} = \sqrt{2^2} = \sqrt{4} = 2$: Looks true here! If x = 3, then $\sqrt{x^2} = \sqrt{3^2} = \sqrt{9} = 3$: Looks true here! If x = 5, then $\sqrt{x^2} = \sqrt{5^2} = \sqrt{25}$

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If x = 2, then $\sqrt{x^2} = \sqrt{2^2} = \sqrt{4} = 2$: Looks true here! If x = 3, then $\sqrt{x^2} = \sqrt{3^2} = \sqrt{9} = 3$: Looks true here! If x = 5, then $\sqrt{x^2} = \sqrt{5^2} = \sqrt{25} = 5$

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If x = 2, then $\sqrt{x^2} = \sqrt{2^2} = \sqrt{4} = 2$: Looks true here! If x = 3, then $\sqrt{x^2} = \sqrt{3^2} = \sqrt{9} = 3$: Looks true here! If x = 5, then $\sqrt{x^2} = \sqrt{5^2} = \sqrt{25} = 5$: Looks true here!

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If x = 2, then $\sqrt{x^2} = \sqrt{2^2} = \sqrt{4} = 2$: Looks true here! If x = 3, then $\sqrt{x^2} = \sqrt{3^2} = \sqrt{9} = 3$: Looks true here! If x = 5, then $\sqrt{x^2} = \sqrt{5^2} = \sqrt{25} = 5$: Looks true here! This guy is crazy!

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If x = 2, then $\sqrt{x^2} = \sqrt{2^2} = \sqrt{4} = 2$: Looks true here! If x = 3, then $\sqrt{x^2} = \sqrt{3^2} = \sqrt{9} = 3$: Looks true here! If x = 5, then $\sqrt{x^2} = \sqrt{5^2} = \sqrt{25} = 5$: Looks true here! This guy is crazy!

All of these examples make it really seem like $\sqrt{x^2} = x$

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If x = 2, then $\sqrt{x^2} = \sqrt{2^2} = \sqrt{4} = 2$: Looks true here! If x = 3, then $\sqrt{x^2} = \sqrt{3^2} = \sqrt{9} = 3$: Looks true here! If x = 5, then $\sqrt{x^2} = \sqrt{5^2} = \sqrt{25} = 5$: Looks true here! This guy is crazy!

All of these examples make it really seem like $\sqrt{x^2} = x$

But these examples have something in common. They are all positive!

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If x = 2, then $\sqrt{x^2} = \sqrt{2^2} = \sqrt{4} = 2$: Looks true here! If x = 3, then $\sqrt{x^2} = \sqrt{3^2} = \sqrt{9} = 3$: Looks true here! If x = 5, then $\sqrt{x^2} = \sqrt{5^2} = \sqrt{25} = 5$: Looks true here! This guy is crazy!

All of these examples make it really seem like $\sqrt{x^2} = x$ But these examples have something in common. They are all positive! If x = -2

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If x = 2, then $\sqrt{x^2} = \sqrt{2^2} = \sqrt{4} = 2$: Looks true here! If x = 3, then $\sqrt{x^2} = \sqrt{3^2} = \sqrt{9} = 3$: Looks true here! If x = 5, then $\sqrt{x^2} = \sqrt{5^2} = \sqrt{25} = 5$: Looks true here! This guy is crazy!

All of these examples make it really seem like $\sqrt{x^2} = x$ But these examples have something in common. They are all positive! If x = -2, then $\sqrt{x^2}$

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If x = 2, then $\sqrt{x^2} = \sqrt{2^2} = \sqrt{4} = 2$: Looks true here! If x = 3, then $\sqrt{x^2} = \sqrt{3^2} = \sqrt{9} = 3$: Looks true here! If x = 5, then $\sqrt{x^2} = \sqrt{5^2} = \sqrt{25} = 5$: Looks true here! This guy is crazy!

All of these examples make it really seem like $\sqrt{x^2} = x$

But these examples have something in common. They are all positive!

If
$$x = -2$$
, then $\sqrt{x^2} = \sqrt{(-2)^2} = \sqrt{4}$

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If x = 2, then $\sqrt{x^2} = \sqrt{2^2} = \sqrt{4} = 2$: Looks true here! If x = 3, then $\sqrt{x^2} = \sqrt{3^2} = \sqrt{9} = 3$: Looks true here! If x = 5, then $\sqrt{x^2} = \sqrt{5^2} = \sqrt{25} = 5$: Looks true here! This guy is crazy!

All of these examples make it really seem like $\sqrt{x^2} = x$ But these examples have something in common. They are all positive!

If x = -2, then $\sqrt{x^2} = \sqrt{(-2)^2} = \sqrt{4} = 2$

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If x = 2, then $\sqrt{x^2} = \sqrt{2^2} = \sqrt{4} = 2$: Looks true here! If x = 3, then $\sqrt{x^2} = \sqrt{3^2} = \sqrt{9} = 3$: Looks true here! If x = 5, then $\sqrt{x^2} = \sqrt{5^2} = \sqrt{25} = 5$: Looks true here! This guy is crazy!

All of these examples make it really seem like $\sqrt{x^2} = x$ But these examples have something in common. They are all positive! If x = -2, then $\sqrt{x^2} = \sqrt{(-2)^2} = \sqrt{4} = 2$: Not quite true here!

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If x = 2, then $\sqrt{x^2} = \sqrt{2^2} = \sqrt{4} = 2$: Looks true here! If x = 3, then $\sqrt{x^2} = \sqrt{3^2} = \sqrt{9} = 3$: Looks true here! If x = 5, then $\sqrt{x^2} = \sqrt{5^2} = \sqrt{25} = 5$: Looks true here! This guy is crazy!

All of these examples make it really seem like $\sqrt{x^2} = x$ But these examples have something in common. They are all positive! If x = -2, then $\sqrt{x^2} = \sqrt{(-2)^2} = \sqrt{4} = 2$: Not quite true here! $\sqrt{x^2}$ was positive even though x is negative, because we squared x

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If x = 2, then $\sqrt{x^2} = \sqrt{2^2} = \sqrt{4} = 2$: Looks true here! If x = 3, then $\sqrt{x^2} = \sqrt{3^2} = \sqrt{9} = 3$: Looks true here! If x = 5, then $\sqrt{x^2} = \sqrt{5^2} = \sqrt{25} = 5$: Looks true here! This guy is crazy!

All of these examples make it really seem like $\sqrt{x^2} = x$ But these examples have something in common. They are all positive! If x = -2, then $\sqrt{x^2} = \sqrt{(-2)^2} = \sqrt{4} = 2$: Not quite true here! $\sqrt{x^2}$ was positive even though x is negative, because we squared x So, $\sqrt{x^2} = x$ if x is positive And $\sqrt{x^2} = -x$ if x is negative (which means -x is positive).

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If x = 2, then $\sqrt{x^2} = \sqrt{2^2} = \sqrt{4} = 2$: Looks true here! If x = 3, then $\sqrt{x^2} = \sqrt{3^2} = \sqrt{9} = 3$: Looks true here! If x = 5, then $\sqrt{x^2} = \sqrt{5^2} = \sqrt{25} = 5$: Looks true here! This guy is crazy!

All of these examples make it really seem like $\sqrt{x^2} = x$ But these examples have something in common. They are all positive! If x = -2, then $\sqrt{x^2} = \sqrt{(-2)^2} = \sqrt{4} = 2$: Not quite true here! $\sqrt{x^2}$ was positive even though x is negative, because we squared x So, $\sqrt{x^2} = x$ if x is positive And $\sqrt{x^2} = -x$ if x is negative (which means -x is positive). $\sqrt{x^2} = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If x = 2, then $\sqrt{x^2} = \sqrt{2^2} = \sqrt{4} = 2$: Looks true here! If x = 3, then $\sqrt{x^2} = \sqrt{3^2} = \sqrt{9} = 3$: Looks true here! If x = 5, then $\sqrt{x^2} = \sqrt{5^2} = \sqrt{25} = 5$: Looks true here! This guy is crazy!

All of these examples make it really seem like $\sqrt{x^2} = x$ But these examples have something in common. They are all positive! If x = -2, then $\sqrt{x^2} = \sqrt{(-2)^2} = \sqrt{4} = 2$: Not quite true here! $\sqrt{x^2}$ was positive even though x is negative, because we squared x So, $\sqrt{x^2} = x$ if x is positive And $\sqrt{x^2} = -x$ if x is negative (which means -x is positive). $\sqrt{x^2} = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$ We've seen this function before! It's the absolute value!

At first glance, it seems like:

$$\sqrt{x^2} = x$$

Let's compute some example:

If x = 2, then $\sqrt{x^2} = \sqrt{2^2} = \sqrt{4} = 2$: Looks true here! If x = 3, then $\sqrt{x^2} = \sqrt{3^2} = \sqrt{9} = 3$: Looks true here! If x = 5, then $\sqrt{x^2} = \sqrt{5^2} = \sqrt{25} = 5$: Looks true here! This guy is crazy!

All of these examples make it really seem like $\sqrt{x^2} = x$ But these examples have something in common. They are all positive! If x = -2, then $\sqrt{x^2} = \sqrt{(-2)^2} = \sqrt{4} = 2$: Not quite true here! $\sqrt{x^2}$ was positive even though x is negative, because we squared x So, $\sqrt{x^2} = x$ if x is positive And $\sqrt{x^2} = -x$ if x is negative (which means -x is positive). $\sqrt{x^2} = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$ We've seen this function before! It's the absolute value! **Conclusion:** $\sqrt{x^2} = |x|$