Example 1: Find the solution(s) to: $x^2 = 9$

Example 1: Find the solution(s) to: $x^2 = 9$

Example 1: Find the solution(s) to: $x^2 = 9$

$$\sqrt{x^2} = \sqrt{9}$$

Example 1: Find the solution(s) to: $x^2 = 9$

$$\sqrt{x^2} = \sqrt{9} = 3$$

Example 1: Find the solution(s) to: $x^2 = 9$

• why?
$$|x| = \sqrt{x^2} = \sqrt{9} = 3$$

Example 1: Find the solution(s) to: $x^2 = 9$

(*wby?)
$$|x| = \sqrt{x^2} = \sqrt{9} = 3$$

Since $|x| = 3$, the solutions are: $x = 3, -3$

Example 1: Find the solution(s) to: $x^2 = 9$ Taking the square root of both sides, we get:

(withy?)
$$|x| = \sqrt{x^2} = \sqrt{9} = 3$$

Since $|x| = 3$, the solutions are: $x = 3, -3$
Example 2: Find the solution(s) to:
 $x^2 = 5$

Example 1: Find the solution(s) to: $x^2 = 9$ Taking the square root of both sides, we get: $(xy)^2$ $|x| = \sqrt{x^2} = \sqrt{9} = 3$ Since |x| = 3, the solutions are: x = 3, -3 **Example 2:** Find the solution(s) to: $x^2 = 5$

Example 1: Find the solution(s) to: $x^2 = 9$ Taking the square root of both sides, we get: $(x) = \sqrt{x^2} = \sqrt{9} = 3$ Since |x| = 3, the solutions are: x = 3, -3 **Example 2:** Find the solution(s) to: $x^2 = 5$ Taking the square root of both sides, we get:

$$\sqrt{x^2} = \sqrt{5}$$

Example 1: Find the solution(s) to: $x^2 = 9$ Taking the square root of both sides, we get: $|x| = \sqrt{x^2} = \sqrt{9} = 3$ Since |x| = 3, the solutions are: x = 3, -3 **Example 2:** Find the solution(s) to: $x^2 = 5$ Taking the square root of both sides, we get:

 $\sqrt{x^2} = \sqrt{5} = \sqrt{5}$

Example 1: Find the solution(s) to: $x^2 = 9$ Taking the square root of both sides, we get: $|x| = \sqrt{x^2} = \sqrt{9} = 3$ Since |x| = 3, the solutions are: x = 3, -3 **Example 2:** Find the solution(s) to: $x^2 = 5$ Taking the square root of both sides, we get: $|x| = \sqrt{x^2} = \sqrt{9} = \sqrt{5}$

Example 1: Find the solution(s) to: $x^2 = 9$ Taking the square root of both sides, we get: $(x) = \sqrt{x^2} = \sqrt{9} = 3$ Since |x| = 3, the solutions are: x = 3, -3 **Example 2:** Find the solution(s) to: $x^2 = 5$ Taking the square root of both sides, we get: $(x) = \sqrt{x^2} = \sqrt{9} = \sqrt{5}$ Since $|x| = \sqrt{5}$, the solutions are: $x = \sqrt{5}, -\sqrt{5}$

Example 1: Find the solution(s) to: $v^2 - 0$ Taking the square root of both sides, we get: $|x| = \sqrt{x^2} = \sqrt{9} = 3$ ▶ why? Since |x| = 3, the solutions are: x = 3, -3**Example 2:** Find the solution(s) to: $x^2 - 5$ Taking the square root of both sides, we get: $|x| = \sqrt{x^2} = \sqrt{9} = \sqrt{5}$ ▶ why? Since $|x| = \sqrt{5}$, the solutions are: $x = \sqrt{5}, -\sqrt{5}$ **Example 3:** Find the solution(s) to:

Example 1: Find the solution(s) to: $v^2 - 0$ Taking the square root of both sides, we get: $|x| = \sqrt{x^2} = \sqrt{9} = 3$ ▶ why? Since |x| = 3, the solutions are: x = 3, -3**Example 2:** Find the solution(s) to: $x^2 - 5$ Taking the square root of both sides, we get: $|x| = \sqrt{x^2} = \sqrt{9} = \sqrt{5}$ ▶ why? Since $|x| = \sqrt{5}$, the solutions are: $x = \sqrt{5}, -\sqrt{5}$ **Example 3:** Find the solution(s) to: $x^2 - 4 = 0$

Example 1: Find the solution(s) to: $v^2 - 0$ Taking the square root of both sides, we get: $|x| = \sqrt{x^2} = \sqrt{9} = 3$ ▶ why? Since |x| = 3, the solutions are: x = 3, -3**Example 2:** Find the solution(s) to: $x^2 - 5$ Taking the square root of both sides, we get: $|x| = \sqrt{x^2} = \sqrt{9} = \sqrt{5}$ ▶ why? Since $|x| = \sqrt{5}$, the solutions are: $x = \sqrt{5}, -\sqrt{5}$ **Example 3:** Find the solution(s) to: $x^2 - 4 = 0$

Example 1: Find the solution(s) to: $v^2 - 0$ Taking the square root of both sides, we get: $|x| = \sqrt{x^2} = \sqrt{9} = 3$ ▶ why? Since |x| = 3, the solutions are: x = 3, -3**Example 2:** Find the solution(s) to: $x^2 - 5$ Taking the square root of both sides, we get: $|x| = \sqrt{x^2} = \sqrt{9} = \sqrt{5}$ ▶ why? Since $|x| = \sqrt{5}$, the solutions are: $x = \sqrt{5}, -\sqrt{5}$ **Example 3:** Find the solution(s) to: $x^2 - 4 = 0$

Example 1: Find the solution(s) to: $v^2 - 0$ Taking the square root of both sides, we get: $|x| = \sqrt{x^2} = \sqrt{9} = 3$ ▶ why? Since |x| = 3, the solutions are: x = 3, -3**Example 2:** Find the solution(s) to: $x^2 - 5$ Taking the square root of both sides, we get: $|x| = \sqrt{x^2} = \sqrt{9} = \sqrt{5}$ ▶ why? Since $|x| = \sqrt{5}$, the solutions are: $x = \sqrt{5}, -\sqrt{5}$ **Example 3:** Find the solution(s) to: $x^2 - 4 = 0$

$$x^2 - 4 + 4 = 0 + 4$$

Example 1: Find the solution(s) to: $v^2 - 0$ Taking the square root of both sides, we get: $|x| = \sqrt{x^2} = \sqrt{9} = 3$ ▶ why? Since |x| = 3, the solutions are: x = 3, -3**Example 2:** Find the solution(s) to: $x^2 - 5$ Taking the square root of both sides, we get: $|x| = \sqrt{x^2} = \sqrt{9} = \sqrt{5}$ ▶ why? Since $|x| = \sqrt{5}$, the solutions are: $x = \sqrt{5}, -\sqrt{5}$ **Example 3:** Find the solution(s) to: $x^2 - 4 = 0$

$$x^2 - 4 + 4 = 0 + 4 = 4$$

Example 1: Find the solution(s) to: $v^2 - 0$ Taking the square root of both sides, we get: $|x| = \sqrt{x^2} = \sqrt{9} = 3$ ▶ why? Since |x| = 3, the solutions are: x = 3, -3**Example 2:** Find the solution(s) to: $x^2 - 5$ Taking the square root of both sides, we get: $|x| = \sqrt{x^2} = \sqrt{9} = \sqrt{5}$ ▶ why? Since $|x| = \sqrt{5}$, the solutions are: $x = \sqrt{5}, -\sqrt{5}$ **Example 3:** Find the solution(s) to: $x^2 - 4 = 0$

$$x^2 = x^2 - 4 + 4 = 0 + 4 = 4$$

Example 1: Find the solution(s) to: $v^2 - 0$ Taking the square root of both sides, we get: $|x| = \sqrt{x^2} = \sqrt{9} = 3$ ▶ why? Since |x| = 3, the solutions are: x = 3, -3**Example 2:** Find the solution(s) to: $x^2 - 5$ Taking the square root of both sides, we get: $|x| = \sqrt{x^2} = \sqrt{9} = \sqrt{5}$ ▶ why? Since $|x| = \sqrt{5}$, the solutions are: $x = \sqrt{5}, -\sqrt{5}$ **Example 3:** Find the solution(s) to: $x^2 - 4 = 0$

Following Frog and Toad we need to Add 4 before taking the square root This gives us:

$$x^2 = x^2 - 4 + 4 = 0 + 4 = 4$$

Example 1: Find the solution(s) to: $x^2 - 0$ Taking the square root of both sides, we get: $|x| = \sqrt{x^2} = \sqrt{9} = 3$ ▶ why? Since |x| = 3, the solutions are: x = 3, -3**Example 2:** Find the solution(s) to: $x^2 = 5$ Taking the square root of both sides, we get: $|x| = \sqrt{x^2} = \sqrt{9} = \sqrt{5}$ ▶ why? Since $|x| = \sqrt{5}$, the solutions are: $x = \sqrt{5}, -\sqrt{5}$ **Example 3:** Find the solution(s) to: $x^2 - 4 = 0$

Following Frog and Toad we need to Add 4 before taking the square root This gives us:

$$x^2 = x^2 - 4 + 4 = 0 + 4 = 4$$

$$\sqrt{x^2} = \sqrt{4}$$

Example 1: Find the solution(s) to: $x^2 - 0$ Taking the square root of both sides, we get: $|x| = \sqrt{x^2} = \sqrt{9} = 3$ ▶ why? Since |x| = 3, the solutions are: x = 3, -3**Example 2:** Find the solution(s) to: $x^2 = 5$ Taking the square root of both sides, we get: $|x| = \sqrt{x^2} = \sqrt{9} = \sqrt{5}$ ▶ why? Since $|x| = \sqrt{5}$, the solutions are: $x = \sqrt{5}, -\sqrt{5}$ **Example 3:** Find the solution(s) to: $x^2 - 4 = 0$

Following Frog and Toad we need to Add 4 before taking the square root This gives us:

$$x^2 = x^2 - 4 + 4 = 0 + 4 = 4$$

$$\sqrt{x^2} = \sqrt{4} = 2$$

Example 1: Find the solution(s) to: $x^2 - 0$ Taking the square root of both sides, we get: $|x| = \sqrt{x^2} = \sqrt{9} = 3$ ▶ why? Since |x| = 3, the solutions are: x = 3, -3**Example 2:** Find the solution(s) to: $x^2 = 5$ Taking the square root of both sides, we get: $|x| = \sqrt{x^2} = \sqrt{9} = \sqrt{5}$ ▶ why? Since $|x| = \sqrt{5}$, the solutions are: $x = \sqrt{5}, -\sqrt{5}$ **Example 3:** Find the solution(s) to: $x^2 - 4 = 0$

Following Frog and Toad we need to Add 4 before taking the square root This gives us:

$$x^2 = x^2 - 4 + 4 = 0 + 4 = 4$$

• why?
$$|x| = \sqrt{x^2} = \sqrt{4} = 2$$

Example 1: Find the solution(s) to: $x^2 - 0$ Taking the square root of both sides, we get: $|x| = \sqrt{x^2} = \sqrt{9} = 3$ ▶ why? Since |x| = 3, the solutions are: x = 3, -3**Example 2:** Find the solution(s) to: $x^2 = 5$ Taking the square root of both sides, we get: $|x| = \sqrt{x^2} = \sqrt{9} = \sqrt{5}$ ▶ why? Since $|x| = \sqrt{5}$, the solutions are: $x = \sqrt{5}, -\sqrt{5}$ **Example 3:** Find the solution(s) to: $x^2 - 4 = 0$ Following Frog and Toad we need to Add 4 before taking the square root This gives us:

$$x^2 = x^2 - 4 + 4 = 0 + 4 = 4$$

Now we can Take the square root of both sides, to get:

why?
$$|x| = \sqrt{x^2} = \sqrt{4} = 2$$

ince $|x| = 2$, the solutions are: $x = 2, -2$

Si