To put $3x^2 - 12x + 1$ in the form: $a(x - h)^2 + k$ we need to know the values of *a*, *h*, and *k* so that:

$$3x^2 - 12x + 1 = a(x - h)^2 + k$$

To put $3x^2 - 12x + 1$ in the form: $a(x - h)^2 + k$ we need to know the values of *a*, *h*, and *k* so that:

$$3x^2 - 12x + 1 = a(x - h)^2 + k$$

So, how do we do that if these are written so differently?

To put $3x^2 - 12x + 1$ in the form: $a(x - h)^2 + k$ we need to know the values of *a*, *h*, and *k* so that:

$$3x^2 - 12x + 1 = a(x - h)^2 + k$$

So, how do we do that if these are written so differently? We can write the right-hand side like the left-hand side by ristributing

To put $3x^2 - 12x + 1$ in the form: $a(x - h)^2 + k$ we need to know the values of *a*, *h*, and *k* so that:

$$3x^{2} - 12x + 1 = a(x - h)^{2} + k$$

= a(x - h)(x - h) + k

So, how do we do that if these are written so differently? We can write the right-hand side like the left-hand side by • distributing

To put $3x^2 - 12x + 1$ in the form: $a(x - h)^2 + k$ we need to know the values of *a*, *h*, and *k* so that:

$$3x^{2} - 12x + 1 = a(x - h)^{2} + k$$

= $a(x - h)(x - h) + k$
= $a(x^{2} - 2hx + h^{2}) + k$

So, how do we do that if these are written so differently? We can write the right-hand side like the left-hand side by • distributing

To put $3x^2 - 12x + 1$ in the form: $a(x - h)^2 + k$ we need to know the values of *a*, *h*, and *k* so that:

$$3x^{2} - 12x + 1 = a(x - h)^{2} + k$$

= $a(x - h)(x - h) + k$
= $a(x^{2} - 2hx + h^{2}) + k$
= $ax^{2} - 2ahx + ah^{2} + k$

So, how do we do that if these are written so differently? We can write the right-hand side like the left-hand side by • distributing

To put $3x^2 - 12x + 1$ in the form: $a(x - h)^2 + k$ we need to know the values of *a*, *h*, and *k* so that:

$$3x^{2} - 12x + 1 = a(x - h)^{2} + k$$

= $a(x - h)(x - h) + k$
= $a(x^{2} - 2hx + h^{2}) + k$
= $ax^{2} - 2ahx + ah^{2} + k$

So, how do we do that if these are written so differently? We can write the right-hand side like the left-hand side by • distributing After distributing on the right-hand side, we are left with:

To put $3x^2 - 12x + 1$ in the form: $a(x - h)^2 + k$ we need to know the values of *a*, *h*, and *k* so that:

$$3x^{2} - 12x + 1 = a(x - h)^{2} + k$$

= $a(x - h)(x - h) + k$
= $a(x^{2} - 2hx + h^{2}) + k$
= $ax^{2} - 2ahx + ah^{2} + k$

So, how do we do that if these are written so differently? We can write the right-hand side like the left-hand side by • distributing After distributing on the right-hand side, we are left with:

$$3x^2 - 12x + 1 = ax^2 - 2ahx + ah^2 + k$$

To put $3x^2 - 12x + 1$ in the form: $a(x - h)^2 + k$ we need to know the values of *a*, *h*, and *k* so that:

$$3x^{2} - 12x + 1 = a(x - h)^{2} + k$$

= $a(x - h)(x - h) + k$
= $a(x^{2} - 2hx + h^{2}) + k$
= $ax^{2} - 2ahx + ah^{2} + k$

So, how do we do that if these are written so differently? We can write the right-hand side like the left-hand side by • distributing After distributing on the right-hand side, we are left with:

$$3x^2 - 12x + 1 = ax^2 - 2ahx + ah^2 + k$$

We want these to be the same (equal) for every x.

To put $3x^2 - 12x + 1$ in the form: $a(x - h)^2 + k$ we need to know the values of *a*, *h*, and *k* so that:

$$3x^{2} - 12x + 1 = a(x - h)^{2} + k$$

= $a(x - h)(x - h) + k$
= $a(x^{2} - 2hx + h^{2}) + k$
= $ax^{2} - 2ahx + ah^{2} + k$

So, how do we do that if these are written so differently? We can write the right-hand side like the left-hand side by • distributing After distributing on the right-hand side, we are left with:

$$3x^2 - 12x + 1 = ax^2 - 2ahx + ah^2 + k$$

To put $3x^2 - 12x + 1$ in the form: $a(x - h)^2 + k$ we need to know the values of *a*, *h*, and *k* so that:

$$3x^{2} - 12x + 1 = a(x - h)^{2} + k$$

= $a(x - h)(x - h) + k$
= $a(x^{2} - 2hx + h^{2}) + k$
= $ax^{2} - 2ahx + ah^{2} + k$

So, how do we do that if these are written so differently? We can write the right-hand side like the left-hand side by • distributing After distributing on the right-hand side, we are left with:

$$3x^2 - 12x + 1 = ax^2 - 2ahx + ah^2 + k$$

We want these to be the same (equal) for every *x*. So, we need: 3 = a-12 = -2ah

To put $3x^2 - 12x + 1$ in the form: $a(x - h)^2 + k$ we need to know the values of *a*, *h*, and *k* so that:

$$3x^{2} - 12x + 1 = a(x - h)^{2} + k$$

= $a(x - h)(x - h) + k$
= $a(x^{2} - 2hx + h^{2}) + k$
= $ax^{2} - 2ahx + ah^{2} + k$

So, how do we do that if these are written so differently? We can write the right-hand side like the left-hand side by • distributing After distributing on the right-hand side, we are left with:

 $3x^2-12x + 1 = ax^2-2ahx + ah^2 + k$ We want these to be the same (equal) for every x. So, we need: 3 = a-12 = -2ah

 $1 = a \cdot h^2 + k$

To put $3x^2 - 12x + 1$ in the form: $a(x - h)^2 + k$ we need to know the values of *a*, *h*, and *k* so that:

$$3x^{2} - 12x + 1 = a(x - h)^{2} + k$$

= $a(x - h)(x - h) + k$
= $a(x^{2} - 2hx + h^{2}) + k$
= $ax^{2} - 2ahx + ah^{2} + k$

So, how do we do that if these are written so differently? We can write the right-hand side like the left-hand side by • distributing After distributing on the right-hand side, we are left with:

$$3x^2 - 12x + 1 = ax^2 - 2ahx + ah^2 + k$$

We want these to be the same (equal) for every *x*. So, we need:

3 = a -12 = -2ah $1 = a \cdot h^2 + k$

To put $3x^2 - 12x + 1$ in the form: $a(x - h)^2 + k$ we need to know the values of *a*, *h*, and *k* so that:

$$3x^{2} - 12x + 1 = a(x - h)^{2} + k$$

= $a(x - h)(x - h) + k$
= $a(x^{2} - 2hx + h^{2}) + k$
= $ax^{2} - 2ahx + ah^{2} + k$

So, how do we do that if these are written so differently? We can write the right-hand side like the left-hand side by • distributing After distributing on the right-hand side, we are left with:

$$3x^2 - 12x + 1 = ax^2 - 2ahx + ah^2 + k$$

$$3 = a$$

-12 = -2ah = -2 · 3h
1 = a · h² + k

To put $3x^2 - 12x + 1$ in the form: $a(x - h)^2 + k$ we need to know the values of *a*, *h*, and *k* so that:

$$3x^{2} - 12x + 1 = a(x - h)^{2} + k$$

= $a(x - h)(x - h) + k$
= $a(x^{2} - 2hx + h^{2}) + k$
= $ax^{2} - 2ahx + ah^{2} + k$

So, how do we do that if these are written so differently? We can write the right-hand side like the left-hand side by • distributing After distributing on the right-hand side, we are left with:

$$3x^2 - 12x + 1 = ax^2 - 2ahx + ah^2 + k$$

$$3 = a$$

-12 = -2ah = -2 · 3h = -6h
1 = a · h² + k

To put $3x^2 - 12x + 1$ in the form: $a(x - h)^2 + k$ we need to know the values of *a*, *h*, and *k* so that:

$$3x^{2} - 12x + 1 = a(x - h)^{2} + k$$

= $a(x - h)(x - h) + k$
= $a(x^{2} - 2hx + h^{2}) + k$
= $ax^{2} - 2ahx + ah^{2} + k$

So, how do we do that if these are written so differently? We can write the right-hand side like the left-hand side by • distributing After distributing on the right-hand side, we are left with:

$$3x^2 - 12x + 1 = ax^2 - 2ahx + ah^2 + k$$

$$3 = a$$

-12 = -2ah = -2 · 3h = -6h \rightarrow $^{-12} = ^{-6h}$
1 = a · h² + k

To put $3x^2 - 12x + 1$ in the form: $a(x - h)^2 + k$ we need to know the values of *a*, *h*, and *k* so that:

$$3x^{2} - 12x + 1 = a(x - h)^{2} + k$$

= $a(x - h)(x - h) + k$
= $a(x^{2} - 2hx + h^{2}) + k$
= $ax^{2} - 2ahx + ah^{2} + k$

So, how do we do that if these are written so differently? We can write the right-hand side like the left-hand side by • distributing After distributing on the right-hand side, we are left with:

$$3x^2 - 12x + 1 = ax^2 - 2ahx + ah^2 + k$$

3 = a

$$-12 = -2ah = -2 \cdot 3h = -6h \rightarrow \qquad \frac{-12}{-6} = \frac{-6h}{-6}$$

 $1 = a \cdot h^2 + k$

To put $3x^2 - 12x + 1$ in the form: $a(x - h)^2 + k$ we need to know the values of *a*, *h*, and *k* so that:

$$3x^{2} - 12x + 1 = a(x - h)^{2} + k$$

= $a(x - h)(x - h) + k$
= $a(x^{2} - 2hx + h^{2}) + k$
= $ax^{2} - 2ahx + ah^{2} + k$

So, how do we do that if these are written so differently? We can write the right-hand side like the left-hand side by • distributing After distributing on the right-hand side, we are left with:

$$3x^2 - 12x + 1 = ax^2 - 2ahx + ah^2 + k$$

h

3 = a

$$-12 = -2ah = -2 \cdot 3h = -6h \rightarrow 2 = \frac{-12}{-6} = \frac{-6h}{-6} = 1 = a \cdot h^2 + k$$

To put $3x^2 - 12x + 1$ in the form: $a(x - h)^2 + k$ we need to know the values of *a*, *h*, and *k* so that:

$$3x^{2} - 12x + 1 = a(x - h)^{2} + k$$

= $a(x - h)(x - h) + k$
= $a(x^{2} - 2hx + h^{2}) + k$
= $ax^{2} - 2ahx + ah^{2} + k$

So, how do we do that if these are written so differently? We can write the right-hand side like the left-hand side by • distributing After distributing on the right-hand side, we are left with:

$$3x^2 - 12x + 1 = ax^2 - 2ahx + ah^2 + k$$

3 = a

$$-12 = -2ah = -2 \cdot 3h = -6h \rightarrow 2 = \frac{-12}{-6} = \frac{-6h}{-6} = h \rightarrow h = 2$$

 $1 = a \cdot h^2 + k$

To put $3x^2 - 12x + 1$ in the form: $a(x - h)^2 + k$ we need to know the values of *a*, *h*, and *k* so that:

$$3x^{2} - 12x + 1 = a(x - h)^{2} + k$$

= $a(x - h)(x - h) + k$
= $a(x^{2} - 2hx + h^{2}) + k$
= $ax^{2} - 2ahx + ah^{2} + k$

So, how do we do that if these are written so differently? We can write the right-hand side like the left-hand side by • distributing After distributing on the right-hand side, we are left with:

$$3x^2 - 12x + 1 = ax^2 - 2ahx + ah^2 + k$$

We want these to be the same (equal) for every x. So, we need:

3 = a $-12 = -2ah = -2 \cdot 3h = -6h \rightarrow 2 = \frac{-12}{-6} = \frac{-6h}{-6} = h \rightarrow h = 2$ $1 = a \cdot h^2 + k = 3 \cdot 2^2 + k$

To put $3x^2 - 12x + 1$ in the form: $a(x - h)^2 + k$ we need to know the values of *a*, *h*, and *k* so that:

$$3x^{2} - 12x + 1 = a(x - h)^{2} + k$$

= $a(x - h)(x - h) + k$
= $a(x^{2} - 2hx + h^{2}) + k$
= $ax^{2} - 2ahx + ah^{2} + k$

So, how do we do that if these are written so differently? We can write the right-hand side like the left-hand side by • distributing After distributing on the right-hand side, we are left with:

$$3x^2 - 12x + 1 = ax^2 - 2ahx + ah^2 + k$$

We want these to be the same (equal) for every x. So, we need:

3 = a $-12 = -2ah = -2 \cdot 3h = -6h \rightarrow 2 = \frac{-12}{-6} = \frac{-6h}{-6} = h \rightarrow h = 2$ $1 = a \cdot h^2 + k = 3 \cdot 2^2 + k = 3 \cdot 4 + k$

To put $3x^2 - 12x + 1$ in the form: $a(x - h)^2 + k$ we need to know the values of *a*, *h*, and *k* so that:

$$3x^{2} - 12x + 1 = a(x - h)^{2} + k$$

= $a(x - h)(x - h) + k$
= $a(x^{2} - 2hx + h^{2}) + k$
= $ax^{2} - 2ahx + ah^{2} + k$

So, how do we do that if these are written so differently? We can write the right-hand side like the left-hand side by • distributing After distributing on the right-hand side, we are left with:

$$3x^2 - 12x + 1 = ax^2 - 2ahx + ah^2 + k$$

We want these to be the same (equal) for every x. So, we need:

3 = a $-12 = -2ah = -2 \cdot 3h = -6h \rightarrow 2 = \frac{-12}{-6} = \frac{-6h}{-6} = h \rightarrow h = 2$ $1 = a \cdot h^2 + k = 3 \cdot 2^2 + k = 3 \cdot 4 + k = 12 + k$

To put $3x^2 - 12x + 1$ in the form: $a(x - h)^2 + k$ we need to know the values of *a*, *h*, and *k* so that:

$$3x^{2} - 12x + 1 = a(x - h)^{2} + k$$

= $a(x - h)(x - h) + k$
= $a(x^{2} - 2hx + h^{2}) + k$
= $ax^{2} - 2ahx + ah^{2} + k$

So, how do we do that if these are written so differently? We can write the right-hand side like the left-hand side by • distributing After distributing on the right-hand side, we are left with:

$$3x^2 - 12x + 1 = ax^2 - 2ahx + ah^2 + k$$

We want these to be the same (equal) for every x. So, we need:

3 = a $-12 = -2ah = -2 \cdot 3h = -6h \rightarrow 2 = \frac{-12}{-6} = \frac{-6h}{-6} = h \rightarrow h = 2$ $1 = a \cdot h^2 + k = 3 \cdot 2^2 + k = 3 \cdot 4 + k = 12 + k \rightarrow 1 = 12 + k$

To put $3x^2 - 12x + 1$ in the form: $a(x - h)^2 + k$ we need to know the values of *a*, *h*, and *k* so that:

$$3x^{2} - 12x + 1 = a(x - h)^{2} + k$$

= $a(x - h)(x - h) + k$
= $a(x^{2} - 2hx + h^{2}) + k$
= $ax^{2} - 2ahx + ah^{2} + k$

So, how do we do that if these are written so differently? We can write the right-hand side like the left-hand side by After distributing on the right-hand side, we are left with:

$$3x^2 - 12x + 1 = ax^2 - 2ahx + ah^2 + k$$

We want these to be the same (equal) for every x. So, we need:

3 = a

 $-12 = -2ah = -2 \cdot 3h = -6h \rightarrow 2 = \frac{-12}{-6} = \frac{-6h}{-6} = h \rightarrow h = 2$ $1 = a \cdot h^2 + k = 3 \cdot 2^2 + k = 3 \cdot 4 + k = 12 + k \rightarrow 1 = 12 + k$ $\rightarrow k = 1 - 12$

To put $3x^2 - 12x + 1$ in the form: $a(x - h)^2 + k$ we need to know the values of *a*, *h*, and *k* so that:

$$3x^{2} - 12x + 1 = a(x - h)^{2} + k$$

= $a(x - h)(x - h) + k$
= $a(x^{2} - 2hx + h^{2}) + k$
= $ax^{2} - 2ahx + ah^{2} + k$

So, how do we do that if these are written so differently? We can write the right-hand side like the left-hand side by After distributing on the right-hand side, we are left with:

$$3x^2 - 12x + 1 = ax^2 - 2ahx + ah^2 + k$$

We want these to be the same (equal) for every x. So, we need:

3 = a

 $-12 = -2ah = -2 \cdot 3h = -6h \rightarrow 2 = \frac{-12}{-6} = \frac{-6h}{-6} = h \rightarrow h = 2$ 1 = $a \cdot h^2 + k = 3 \cdot 2^2 + k = 3 \cdot 4 + k = 12 + k \rightarrow 1 = 12 + k$ $\rightarrow k = 1 - 12 = -11$

To put $3x^2 - 12x + 1$ in the form: $a(x - h)^2 + k$ we need to know the values of *a*, *h*, and *k* so that:

$$3x^{2} - 12x + 1 = a(x - h)^{2} + k$$

= $a(x - h)(x - h) + k$
= $a(x^{2} - 2hx + h^{2}) + k$
= $ax^{2} - 2ahx + ah^{2} + k$

So, how do we do that if these are written so differently? We can write the right-hand side like the left-hand side by After distributing on the right-hand side, we are left with:

$$3x^2 - 12x + 1 = ax^2 - 2ahx + ah^2 + k$$

We want these to be the same (equal) for every x. So, we need:

3 = a

$$-12 = -2ah = -2 \cdot 3h = -6h \rightarrow 2 = \frac{-12}{-6} = \frac{-6h}{-6} = h \rightarrow h = 2$$

 $1 = a \cdot h^{2} + k = 3 \cdot 2^{2} + k = 3 \cdot 4 + k = 12 + k \rightarrow 1 = 12 + k$ $\rightarrow \mathbf{k} = 1 - 12 = -\mathbf{11}$

Conclusion: We can re-write the polynomial in the form we want:

To put $3x^2 - 12x + 1$ in the form: $a(x - h)^2 + k$ we need to know the values of *a*, *h*, and *k* so that:

$$3x^{2} - 12x + 1 = a(x - h)^{2} + k$$

= $a(x - h)(x - h) + k$
= $a(x^{2} - 2hx + h^{2}) + k$
= $ax^{2} - 2ahx + ah^{2} + k$

So, how do we do that if these are written so differently? We can write the right-hand side like the left-hand side by After distributing on the right-hand side, we are left with:

$$3x^2 - 12x + 1 = ax^2 - 2ahx + ah^2 + k$$

We want these to be the same (equal) for every x. So, we need:

3 = a

$$-12 = -2ah = -2 \cdot 3h = -6h \rightarrow 2 = \frac{-12}{-6} = \frac{-6h}{-6} = h \rightarrow h = 2$$

 $1 = a \cdot h^{2} + k = 3 \cdot 2^{2} + k = 3 \cdot 4 + k = 12 + k \rightarrow 1 = 12 + k$ $\rightarrow \mathbf{k} = 1 - 12 = -\mathbf{11}$

Conclusion: We can re-write the polynomial in the form we want:

$$3x^2 - 12x + 1 = 3(x - 2)^2 - 11$$