Example: Find the solution(s) to:

$$3x^2 - 12x + 1 = 0$$

Example: Find the solution(s) to:

$$3x^2 - 12x + 1 = 0$$

• Like Ex4 we need to write this in the form: $a(x-h)^2 + k$

Example: Find the solution(s) to:

$$3(x-2)^2 - 11 = 3x^2 - 12x + 1 = 0$$

• Like Ex4 we need to write this in the form: $a(x-h)^2 + k$

► Here's how

Example: Find the solution(s) to:

$$3(x-2)^2 - 11 = 3x^2 - 12x + 1 = 0$$

• Like Ex4 we need to write this in the form: $a(x-h)^2+k$

► Here's how

To solve for x in $3(x-2)^2-11 = 0$ we have to undo 4 operations:

Example: Find the solution(s) to:

$$3(x-2)^2 - 11 = 3x^2 - 12x + 1 = 0$$

• Like Ex 4) we need to write this in the form: $a(x-h)^2 + k$

▶ Here's how

To solve for x in $3(x-2)^2-11 = 0$ we have to undo 4 operations: Subtract 2

Example: Find the solution(s) to:

 $3(x-2)^2 - 11 = 3x^2 - 12x + 1 = 0$

• Like Ex4) we need to write this in the form: $a(x-h)^2+k$

▶ Here's how

To solve for x in $3(x-2)^2-11 = 0$ we have to undo 4 operations: Subtract 2 Square it

Example: Find the solution(s) to:

 $3(x-2)^2 - 11 = 3x^2 - 12x + 1 = 0$

• Like Ex4 we need to write this in the form: $a(x-h)^2+k$

▶ Here's how

To solve for x in $3(x-2)^2-11 = 0$ we have to undo 4 operations: Subtract 2 Square it Multiply by 3

Example: Find the solution(s) to:

 $3(x-2)^2 - 11 = 3x^2 - 12x + 1 = 0$

• Like Ex4 we need to write this in the form: $a(x-h)^2+k$

▶ Here's how

To solve for x in $3(x-2)^2-11 = 0$ we have to undo 4 operations: Subtract 2 Square it Multiply by 3 Subtract 11

Example: Find the solution(s) to:

 $3(x-2)^2 - 11 = 3x^2 - 12x + 1 = 0$

• Like Ex 4) we need to write this in the form: $a(x-h)^2 + k$

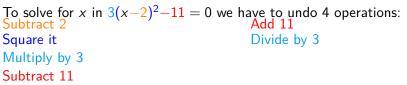
► Here's how

To solve for x in $3(x-2)^2-11 = 0$ we have to undo 4 operations: Subtract 2 Square it Multiply by 3 Subtract 11 • Like Frog and Tood we undo these operations in the opposite order.

Example: Find the solution(s) to:

$$3(x-2)^2 - 11 = 3x^2 - 12x + 1 = 0$$

Like Ex4 we need to write this in the form: $a(x-h)^2+k$

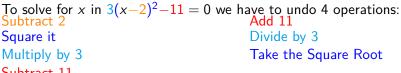

▶ Here's how

To solve for x in $3(x-2)^2-11 = 0$ we have to undo 4 operations: Subtract 2 Square it Multiply by 3 Subtract 11 • Like Frog and Toad we undo these operations in the opposite order.

Example: Find the solution(s) to:

$$3(x-2)^2 - 11 = 3x^2 - 12x + 1 = 0$$

• Like Ex 4 we need to write this in the form: $a(x-h)^2+k$



• Like Frog and Toad we undo these operations in the opposite order.

Example: Find the solution(s) to:

 $3(x-2)^2 - 11 = 3x^2 - 12x + 1 = 0$

• Like Ex4) we need to write this in the form: $a(x-h)^2 + k$

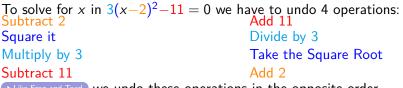

Subtract 11

Like Frog and Toad we undo these operations in the opposite order.

Example: Find the solution(s) to:

 $3(x-2)^2 - 11 = 3x^2 - 12x + 1 = 0$

Like Ex4 we need to write this in the form: $a(x-h)^2+k$



Like Frog and Toad we undo these operations in the opposite order.

Example: Find the solution(s) to:

$$3(x-2)^2 - 11 = 3x^2 - 12x + 1 = 0$$

• Like Ex4) we need to write this in the form: $a(x-h)^2+k$

• Like Frog and Toad we undo these operations in the opposite order. Adding 11 to both sides gives us:

Example: Find the solution(s) to:

$$3(x-2)^2 - 11 = 3x^2 - 12x + 1 = 0$$

• Like Ex4) we need to write this in the form: $a(x-h)^2 + k$

To solve for x in $3(x-2)^2-11 = 0$ we have to undo 4 operations: Subtract 2 Square it Multiply by 3 Subtract 11 Cuberror Like Frog and Toad we undo these operations in the opposite order.

• Like Frog and Toad we undo these operations in the opposite order Adding 11 to both sides gives us:

 $3(x-2)^2-11+11 = 0+11$

Example: Find the solution(s) to:

$$3(x-2)^2 - 11 = 3x^2 - 12x + 1 = 0$$

• Like Ex4) we need to write this in the form: $a(x-h)^2 + k$

To solve for x in $3(x-2)^2-11 = 0$ we have to undo 4 operations: Subtract 2 Square it Multiply by 3 Subtract 11 Cuber Like Frog and Toad we undo these operations in the opposite order.

• Like Frog and Toad we undo these operations in the opposite order Adding 11 to both sides gives us:

 $3(x-2)^2-11+11 = 0+11 = 11$

Example: Find the solution(s) to:

$$3(x-2)^2 - 11 = 3x^2 - 12x + 1 = 0$$

• Like Ex4 we need to write this in the form: $a(x-h)^2+k$

To solve for x in $3(x-2)^2-11 = 0$ we have to undo 4 operations:Subtract 2Add 11Square itDivide by 3Multiply by 3Take the Square RootSubtract 11Add 2

• Like Frog and Toad we undo these operations in the opposite order. Adding 11 to both sides gives us:

 $3(x-2)^2 = 3(x-2)^2 - 11 + 11 = 0 + 11 = 11$

Example: Find the solution(s) to:

$$3(x-2)^2 - 11 = 3x^2 - 12x + 1 = 0$$

• Like Ex 4) we need to write this in the form: $a(x-h)^2 + k$

To solve for x in $3(x-2)^2-11 = 0$ we have to undo 4 operations: Subtract 2 Add 11 Square it Multiply by 3 Subtract 11 Like Frog and Toad we undo these operations in the opposite order. Adding 11 to both sides gives us:

 $3(x-2)^2 = 3(x-2)^2 = 11 + 11 = 0 + 11 = 11$ Now, we need to Divide by 3 to get:

Example: Find the solution(s) to:

$$3(x-2)^2 - 11 = 3x^2 - 12x + 1 = 0$$

• Like Ex 4) we need to write this in the form: $a(x-h)^2 + k$

To solve for x in $3(x-2)^2-11 = 0$ we have to undo 4 operations: Subtract 2 Square it Multiply by 3 Subtract 11 Add 11 Divide by 3 Take the Square Root Add 2

• Like Frog and Toad we undo these operations in the opposite order. Adding 11 to both sides gives us:

 $3(x-2)^2 = 3(x-2)^2 - 11 + 11 = 0 + 11 = 11$ Now, we need to Divide by 3 to get: $\frac{3(x-2)^2}{2} = \frac{11}{2}$

Example: Find the solution(s) to:

S S

N

$$3(x-2)^2 - 11 = 3x^2 - 12x + 1 = 0$$

• Like Ex4 we need to write this in the form: $a(x-h)^2 + k$

o solve for x in
$$3(x-2)^2-11 = 0$$
 we have to undo 4 operations:
Add 11
quare it
1ultiply by 3
Take the Square Root
Add 2

• Like Frog and Toad we undo these operations in the opposite order. Adding 11 to both sides gives us:

 $3(x-2)^2 = 3(x-2)^2 - 11 + 11 = 0 + 11 = 11$ Now, we need to Divide by 3 to get: $\frac{3(x-2)^2}{2} = \frac{11}{2} = \frac{11}{2}$

Example: Find the solution(s) to:

$$3(x-2)^2 - 11 = 3x^2 - 12x + 1 = 0$$

• Like Ex4) we need to write this in the form: $a(x-h)^2 + k$

To solve for x in $3(x-2)^2-11 = 0$ we have to undo 4 operations: Subtract 2 Square it Multiply by 3 Subtract 11 Add 11 Divide by 3 Take the Square Root Add 2

• Like Frog and Toad we undo these operations in the opposite order. Adding 11 to both sides gives us:

 $3(x-2)^2 = 3(x-2)^2 = 11 + 11 = 0 + 11 = 11$ Now, we need to Divide by 3 to get:

$$(x-2)^2 = \frac{3(x-2)^2}{3} = \frac{11}{3} = \frac{11}{3}$$

Example: Find the solution(s) to:

S S

N

$$3(x-2)^2 - 11 = 3x^2 - 12x + 1 = 0$$

• Like Ex4 we need to write this in the form: $a(x-h)^2 + k$

o solve for x in
$$3(x-2)^2-11 = 0$$
 we have to undo 4 operations:
Add 11
puare it
Multiply by 3
Divide by 3
Take the Square Root
Add 2

• Like Frog and Toad we undo these operations in the opposite order. Adding 11 to both sides gives us:

 $3(x-2)^2 = 3(x-2)^2 = 11 + 11 = 0 + 11 = 11$ Now, we need to Divide by 3 to get:

$$(x-2)^2 = \frac{3(x-2)^2}{3} = \frac{11}{3} = \frac{11}{3}$$

Example: Find the solution(s) to:

$$3(x-2)^2 - 11 = 3x^2 - 12x + 1 = 0$$

• Like Ex4) we need to write this in the form: $a(x-h)^2 + k$

To solve for x in
$$3(x-2)^2-11 = 0$$
 we have to undo 4 operations:
Add 11
Square it
Multiply by 3
Subtract 11
Add 2

• Like Frog and Toad) we undo these operations in the opposite order. Adding 11 to both sides gives us:

 $3(x-2)^2 = 3(x-2)^2 = 11 + 11 = 0 + 11 = 11$ Now, we need to Divide by 3 to get:

$$(x-2)^2 = \frac{3(x-2)^2}{3} = \frac{11}{3} = \frac{11}{3}$$

Now, we can Take the Square Root of both sides to get:

 $\sqrt{(x-2)^2} = \sqrt{\frac{11}{3}}$

Example: Find the solution(s) to:

$$3(x-2)^2 - 11 = 3x^2 - 12x + 1 = 0$$

• Like Ex4) we need to write this in the form: $a(x-h)^2 + k$

To solve for x in $3(x-2)^2-11 = 0$ we have to undo 4 operations: Subtract 2 Square it Multiply by 3 Subtract 11 Add 11 Divide by 3 Take the Square Root Add 2

• Like Frog and Toad) we undo these operations in the opposite order. Adding 11 to both sides gives us:

 $3(x-2)^2 = 3(x-2)^2 = 11 + 11 = 0 + 11 = 11$ Now, we need to Divide by 3 to get:

$$(x-2)^2 = \frac{3(x-2)^2}{3} = \frac{11}{3} = \frac{11}{3}$$

$$\sqrt{(x-2)^2} = \sqrt{\frac{11}{3}} = \sqrt{\frac{11}{3}}$$

Example: Find the solution(s) to:

$$3(x-2)^2 - 11 = 3x^2 - 12x + 1 = 0$$

• Like Ex4) we need to write this in the form: $a(x-h)^2 + k$

To solve for x in $3(x-2)^2-11 = 0$ we have to undo 4 operations: Subtract 2 Square it Multiply by 3 Subtract 11 Add 11 Divide by 3 Take the Square Root Add 2

• Like Frog and Toad we undo these operations in the opposite order. Adding 11 to both sides gives us:

 $3(x-2)^2 = 3(x-2)^2 = 11 + 11 = 0 + 11 = 11$ Now, we need to Divide by 3 to get:

$$(x-2)^2 = \frac{3(x-2)^2}{3} = \frac{11}{3} = \frac{11}{3}$$

• why?
$$|x-2| = \sqrt{(x-2)^2} = \sqrt{\frac{11}{3}} = \sqrt{\frac{11}{3}}$$

Example: Find the solution(s) to:

$$3(x-2)^2 - 11 = 3x^2 - 12x + 1 = 0$$

• Like Ex 4) we need to write this in the form: $a(x-h)^2 + k$

To solve for x in
$$3(x-2)^2-11 = 0$$
 we have to undo 4 operations:
Add 11
Square it
Multiply by 3
Subtract 11
Add 2

• Like Frog and Toad) we undo these operations in the opposite order. Adding 11 to both sides gives us:

 $3(x-2)^2 = 3(x-2)^2 = 11 + 11 = 0 + 11 = 11$ Now, we need to Divide by 3 to get:

$$(x-2)^2 = \frac{3(x-2)^2}{3} = \frac{11}{3} = \frac{11}{3}$$

why?
$$|x-2| = \sqrt{(x-2)^2} = \sqrt{\frac{11}{3}} = \sqrt{\frac{11}{3}}$$

Since $|x-2| = \sqrt{\frac{11}{3}}$, we know that $x-2 = \pm \sqrt{\frac{11}{3}}$

Example: Find the solution(s) to:

$$3(x-2)^2 - 11 = 3x^2 - 12x + 1 = 0$$

• Like Ex4 we need to write this in the form: $a(x-h)^2+k$

To solve for x in $3(x-2)^2-11 = 0$ we have to undo 4 operations: Subtract 2 Square it Multiply by 3 Subtract 11 Add 11 Divide by 3 Take the Square Root Add 2

• Like Frog and Toad) we undo these operations in the opposite order. Adding 11 to both sides gives us:

 $3(x-2)^2 = 3(x-2)^2 = 11 + 11 = 0 + 11 = 11$ Now, we need to Divide by 3 to get:

$$(x-2)^2 = \frac{3(x-2)^2}{3} = \frac{11}{3} = \frac{11}{3}$$

Now, we can Take the Square Root of both sides to get:

why? $|x-2| = \sqrt{(x-2)^2} = \sqrt{\frac{11}{3}} = \sqrt{\frac{11}{3}}$ Since $|x-2| = \sqrt{\frac{11}{3}}$, we know that $x-2 = \pm \sqrt{\frac{11}{3}}$ Adding 2 to both sides gives: $x = 2 \pm \sqrt{\frac{11}{3}}$

Example: Find the solution(s) to:

$$3(x-2)^2 - 11 = 3x^2 - 12x + 1 = 0$$

• Like Ex4 we need to write this in the form: $a(x-h)^2+k$

To solve for x in $3(x-2)^2-11 = 0$ we have to undo 4 operations:Subtract 2Square itMultiply by 3Subtract 11Add 2

• Like Frog and Toad we undo these operations in the opposite order. Adding 11 to both sides gives us:

 $3(x-2)^2 = 3(x-2)^2 = 11 + 11 = 0 + 11 = 11$ Now, we need to Divide by 3 to get:

$$(x-2)^2 = \frac{3(x-2)^2}{3} = \frac{11}{3} = \frac{11}{3}$$

why?
$$|x-2| = \sqrt{(x-2)^2} = \sqrt{\frac{11}{3}} = \sqrt{\frac{11}{3}}$$

Since $|x-2| = \sqrt{\frac{11}{3}}$, we know that $x-2 = \pm \sqrt{\frac{11}{3}}$
Adding 2 to both sides gives: $x = 2 \pm \sqrt{\frac{11}{3}} = 2 + \sqrt{\frac{11}{3}}, 2 - \sqrt{\frac{11}{3}}$