
Solving Quadratics without Factoring - Example

Example: Find the solution(s) to:
To solve for x we have to undo 3 operations, which are:
Add 2
Square it
Subtract 3

Add 3
Take the Square Root
Subtract 2

Like Frog and Toad we undo these operations in the opposite order.
Adding 3 to both sides gives us:
Now, we can Take the Square Root of both sides to get:

Since |x+2| =
√

3, we know that x+2 = ±
√

3
Subtracting 2 from both sides gives the solutions: x = −2±

√
3

We can write the solutions as a list:
x = −2 +

√
3,−2−

√
3
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Solving Quadratics without Factoring - Example

Example: Find the solution(s) to:
(x + 2)2 − 3 = 0

Let’s take a second look at our example.
What if we had multiplied out the left hand side?
Leaving us with the equation:

x2 + 4x + 1 = 0
Hopefully, this should look familiar!

We tried to solve this before with factoring, but we couldn’t!
Why can we solve it now, but couldn’t before?

x2 + 4x + 1 = (x + 2)2 − 3
x only shows up in one place if we write the quadratic as: (x + 2)2 − 3
So, we can undo each operation done to x step-by-step, like we just did.
This question becomes:
If we are given an equation in the form: ax2 + bx + c = 0
Because once we write the quadratic in this form, we can solve it!
Note: In this example, a = 1, h = −2, and k = −3
We will see soon why having −h and +k, is useful

http://coobermath.com/Quadratics/Solving_1_Variable/Factoring/Example_5_failure.pdf
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