In general, we can write any quadratic in factored form: $ax^2 + bx + c = a(x - r_1) \cdot (x - r_2)$

In general, we can write any quadratic in factored form: $ax^2 + bx + c = a(x - r_1) \cdot (x - r_2)$

Where r_1 and r_2 are given by the Quadratic Formula:

In general, we can write any quadratic in factored form: $ax^2 + bx + c = a(x - r_1) \cdot (x - r_2)$

Where r_1 and r_2 are given by the Quadratic Formula:

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

In general, we can write any quadratic in factored form: $ax^2 + bx + c = a(x - r_1) \cdot (x - r_2)$

Where r_1 and r_2 are given by the Quadratic Formula:

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

Using this, we can put any quadratic into Factored Form!