Recall: The \checkmark Quadratic Formula says r_1 and r_2 are \checkmark the roots of: $ax^2 + bx + c = 0$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(2) \pm \sqrt{(2)^2 - 4 \cdot 1 \cdot -3}}{2 \cdot 1}$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(2) \pm \sqrt{(2)^2 - 4 \cdot 1 \cdot -3}}{2 \cdot 1}$ $= \frac{-2 \pm \sqrt{4 + 12}}{2}$

Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^{2} + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(2) \pm \sqrt{(2)^2 - 4 \cdot 1 \cdot -3}}{2 \cdot 1}$ $=\frac{-2\pm\sqrt{4+12}}{2}$ $=\frac{-2\pm\sqrt{16}}{2}$

Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(2) \pm \sqrt{(2)^2 - 4 \cdot 1 \cdot -3}}{2 \cdot 1}$ $=\frac{-2\pm\sqrt{4+12}}{2}$ $=\frac{-2\pm\sqrt{16}}{2}$ $=\frac{-2\pm 4}{2}$

Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^{2} + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(2) \pm \sqrt{(2)^2 - 4 \cdot 1 \cdot -3}}{2 \cdot 1}$ $=\frac{-2\pm\sqrt{4+12}}{2}$ $=\frac{-2\pm\sqrt{16}}{2}$ $=\frac{-2\pm4}{2}$ $=\frac{2}{2}$ and $\frac{-6}{2}$

Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^{2} + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(2) \pm \sqrt{(2)^2 - 4 \cdot 1 \cdot -3}}{2 \cdot 1}$ $=\frac{-2\pm\sqrt{4+12}}{2}$ $=\frac{-2\pm\sqrt{16}}{2}$ $=\frac{-2\pm4}{2}$ $=\frac{2}{2}$ and $\frac{-6}{2}$ = 1 and -3

Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^{2} + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(2) \pm \sqrt{(2)^2 - 4 \cdot 1} \cdot -3}{2 \cdot 1}$ $=\frac{-2\pm\sqrt{4+12}}{2}$ $=\frac{-2\pm\sqrt{16}}{2}$ $=\frac{-2\pm4}{2}$ $=\frac{2}{2}$ and $\frac{-6}{2}$ = 1 and -3The solutions to $x^2 + 2x - 3 = 0$ are: $x = r_{1,2} = 1, -3$