Example: Write the quadratic in factored form:

$$x^2 + 4x - 21 = (x - r_1) \cdot (x - r_2)$$

Example: Write the quadratic in factored form:

$$x^2 + 4x - 21 = (x - r_1) \cdot (x - r_2)$$

 $ightharpoonup
m{Recall:}$ We can factor quadratics in this slightly different way as long as we can find the roots r_1 and r_2

Example: Write the quadratic in factored form:

$$x^2 + 4x - 21 = (x - r_1) \cdot (x - r_2)$$

 $ightharpoonup
m{Recull:}$ We can factor quadratics in this slightly different way as long as we can find the roots r_1 and r_2

The Quadratic Formula gives us a way to find the roots r_1 and r_2 of $x^2 + 4x - 21$

Example: Write the quadratic in factored form:

$$x^2 + 4x - 21 = (x - r_1) \cdot (x - r_2)$$

Recall: We can factor quadratics in this slightly different way as long as we can find the roots r_1 and r_2

The Quadratic Formula gives us a way to find the roots r_1 and r_2 of

$$x^2 + 4x - 21$$

• We can find the roots to be:

Example: Write the quadratic in factored form:

$$x^2 + 4x - 21 = (x - r_1) \cdot (x - r_2)$$

Recall: We can factor quadratics in this slightly different way as long as we can find the roots r_1 and r_2

The Quadratic Formula gives us a way to find the roots r_1 and r_2 of

$$x^2 + 4x - 21$$

• We can find the roots to be: $r_1, r_2 = -7, 3$

Example: Write the quadratic in factored form:

$$x^2 + 4x - 21 = (x - r_1) \cdot (x - r_2)$$

Recall: We can factor quadratics in this slightly different way as long as we can find the roots r_1 and r_2

The Quadratic Formula gives us a way to find the roots r_1 and r_2 of

$$x^2 + 4x - 21$$

• We can find the roots to be: $r_1, r_2 = -7, 3$

So, we get the factored form:

Example: Write the quadratic in factored form:

$$x^2 + 4x - 21 = (x - r_1) \cdot (x - r_2)$$

Pecall: We can factor quadratics in this slightly different way as long as we can find the roots r_1 and r_2

The Quadratic Formula gives us a way to find the roots r_1 and r_2 of

$$x^2 + 4x - 21$$

We can find the roots to be: $r_1, r_2 = -7, 3$

So, we get the factored form:

$$x^{2} + 4x - 21 = (x - (-7)) \cdot (x - 3)$$

Example: Write the quadratic in factored form:

$$x^2 + 4x - 21 = (x - r_1) \cdot (x - r_2)$$

Recall: We can factor quadratics in this slightly different way as long as we can find the roots r_1 and r_2

The Quadratic Formula gives us a way to find the roots r_1 and r_2 of

$$x^2 + 4x - 21$$

We can find the roots to be: $r_1, r_2 = -7, 3$

So, we get the factored form:

$$x^{2} + 4x - 21 = (x - (-7)) \cdot (x - 3)$$

If we wish, we can simplify: -(-7) = 7

Example: Write the quadratic in factored form:

$$x^2 + 4x - 21 = (x - r_1) \cdot (x - r_2)$$

Recall: We can factor quadratics in this slightly different way as long as we can find the roots r_1 and r_2

The Quadratic Formula gives us a way to find the roots r_1 and r_2 of

$$x^2 + 4x - 21$$

We can find the roots to be: $r_1, r_2 = -7, 3$

So, we get the factored form:

$$x^{2} + 4x - 21 = (x - (-7)) \cdot (x - 3)$$

If we wish, we can simplify: -(-7) = 7

$$x^2 + 4x - 21 = (x+7) \cdot (x-3)$$