Solving the quadratic equation: $2x^2 - 3 = 0$:

Solving the quadratic equation: $2x^2 - 3 = 0$: Recall: The Quadratic Formula says r_1 and r_2 are the roots of: $ax^2 + bx + c = 0$

Solving the quadratic equation: $2x^2 - 3 = 0$: Recall: The Quadratic Formula says r_1 and r_2 are the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$

Solving the quadratic equation: $2x^2 - 3 = 0$: Recall: The • Quadratic Formula says r_1 and r_2 are • the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$

Solving the quadratic equation: $2x^2 - 3 = 0$: Recall: The Quadratic Formula says r_1 and r_2 are the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(0) \pm \sqrt{(0)^2 - 4 \cdot 2 \cdot -3}}{2 \cdot 2}$

Solving the quadratic equation: $2x^2 - 3 = 0$: Recall: The Quadratic Formula says r_1 and r_2 are the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(0) \pm \sqrt{(0)^2 - 4 \cdot 2 \cdot -3}}{2 \cdot 2}$ $= \frac{\pm \sqrt{0 + 24}}{4}$

Solving the quadratic equation: $2x^2 - 3 = 0$: Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^2 + bx + c = 0$ $\frac{-(b)\pm\sqrt{(b)^2}-4ac}{2a}$ $r_{1,2} = \frac{-(0)\pm\sqrt{(0)^2-4\cdot 2\cdot -3}}{2\cdot 2}$ $r_{1.2} =$ $\pm \sqrt{0+24}$ $\pm \sqrt{24}$

Solving the quadratic equation: $2x^2 - 3 = 0$: Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2} - 4ac}{2a}$ $r_{1,2} = \frac{-(0) \pm \sqrt{(0)^2 - 4 \cdot 2 \cdot -3}}{2 \cdot 2}$ $=\frac{\pm\sqrt{0+24}}{4}$ $=\frac{\pm\sqrt{24}}{4}$ The solutions to $2x^2 - 3 = 0$ are: $x = r_{1,2} = \frac{\pm \sqrt{24}}{4}$

Solving the quadratic equation: $2x^2 - 3 = 0$: Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{\frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}}{r_{1,2}}$ $r_{1,2} = \frac{\frac{-(0) \pm \sqrt{(0)^2 - 4 \cdot 2 \cdot -3}}{2 \cdot 2}}{\frac{\pm \sqrt{0 + 24}}{4}}$ $= \frac{\frac{\pm \sqrt{24}}{4}}{4}$ The solutions to $2x^2 - 3 = 0$ are: $x = r_{1,2} = \frac{\pm \sqrt{24}}{4}$ We can make this nicer if we notice: $\sqrt{12} = \sqrt{4 \cdot 6}$

Solving the quadratic equation: $2x^2 - 3 = 0$: Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{\frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}}{r_{1,2}}$ $r_{1,2} = \frac{\frac{-(0) \pm \sqrt{(0)^2 - 4 \cdot 2 \cdot -3}}{2 \cdot 2}}{\frac{\pm \sqrt{0 + 24}}{4}}$ $= \frac{\frac{\pm \sqrt{24}}{4}}{4}$ The solutions to $2x^2 - 3 = 0$ are: $x = r_{1,2} = \frac{\pm \sqrt{24}}{4}$ We can make this nicer if we notice: $\sqrt{12} = \sqrt{4 \cdot 6} = \sqrt{4} \cdot \sqrt{6}$

Solving the quadratic equation: $2x^2 - 3 = 0$: Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{\frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}}{r_{1,2}}$ $r_{1,2} = \frac{\frac{-(0) \pm \sqrt{(0)^2 - 4 \cdot 2 \cdot -3}}{2 \cdot 2}}{\frac{\pm \sqrt{0 + 24}}{4}}$ $= \frac{\frac{\pm \sqrt{24}}{4}}{4}$ The solutions to $2x^2 - 3 = 0$ are: $x = r_{1,2} = \frac{\pm \sqrt{24}}{4}$ We can make this nicer if we notice: $\sqrt{12} = \sqrt{4 \cdot 6} = \sqrt{4} \cdot \sqrt{6} = 2\sqrt{6}$ Solving the quadratic equation: $2x^2 - 3 = 0$: Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{\frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}}{r_{1,2}}$ $r_{1,2} = \frac{\frac{-(0) \pm \sqrt{(0)^2 - 4 \cdot 2 \cdot -3}}{2 \cdot 2}}{\frac{\pm \sqrt{0 + 24}}{4}}$ $= \frac{\frac{\pm \sqrt{24}}{4}}{4}$ The solutions to $2x^2 - 3 = 0$ are: $x = r_{1,2} = \frac{\pm \sqrt{24}}{4}$ We can make this nicer if we notice: $\sqrt{12} = \sqrt{4 \cdot 6} = \sqrt{4} \cdot \sqrt{6} = 2\sqrt{6}$ $r_{1,2}=\frac{\pm 2\sqrt{6}}{4}$

Solving the quadratic equation: $2x^2 - 3 = 0$: Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{\frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}}{r_{1,2}}$ $r_{1,2} = \frac{\frac{-(0) \pm \sqrt{(0)^2 - 4 \cdot 2 \cdot -3}}{2 \cdot 2}}{\frac{\pm \sqrt{0 + 24}}{4}}$ $= \frac{\frac{\pm \sqrt{24}}{4}}{4}$ The solutions to $2x^2 - 3 = 0$ are: $x = r_{1,2} = \frac{\pm \sqrt{24}}{4}$ We can make this nicer if we notice: $\sqrt{12} = \sqrt{4 \cdot 6} = \sqrt{4} \cdot \sqrt{6} = 2\sqrt{6}$ $r_{1,2} = \frac{\pm 2\sqrt{6}}{4}$ $= \frac{\pm \sqrt{6}}{2}$

Solving the quadratic equation: $2x^2 - 3 = 0$: Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{\frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}}{r_{1,2}}$ $r_{1,2} = \frac{\frac{-(0) \pm \sqrt{(0)^2 - 4 \cdot 2 \cdot -3}}{2 \cdot 2}}{\frac{\pm \sqrt{0 + 24}}{4}}$ $= \frac{\frac{\pm \sqrt{24}}{4}}{4}$ The solutions to $2x^2 - 3 = 0$ are: $x = r_{1,2} = \frac{\pm \sqrt{24}}{4}$ We can make this nicer if we notice: $\sqrt{12} = \sqrt{4 \cdot 6} = \sqrt{4} \cdot \sqrt{6} = 2\sqrt{6}$ $r_{1,2} = \frac{\pm 2\sqrt{6}}{4}$ $= \frac{\pm \sqrt{6}}{2}$ The solutions to $2x^2 - 3 = 0$ are: $x = r_{1,2} = \frac{\pm \sqrt{6}}{2}$