Recall: The Quadratic Formula says r_1 and r_2 are the roots of: $ax^2 + bx + c = 0$

Recall: The ullet Quadratic Formula says r_1 and r_2 are ullet the roots of:

$$r_{1,2} = \frac{ax^2 + bx + c = 0}{-(b) \pm \sqrt{(b)^2 - 4ac}}$$

Recall: The ullet Quadratic Formula says r_1 and r_2 are ullet the roots of:

$$r_{1,2} = \frac{ax^2 + bx + c = 0}{-(b) \pm \sqrt{(b)^2 - 4ac}}$$

Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of:

r_{1,2} =
$$\frac{-(4) \pm \sqrt{(4)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1}$$

$$r_{1,2} = \frac{-(4) \pm \sqrt{(4)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1}$$

Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of:

$$r_{1,2} = \frac{ax^2 + bx + c = 0}{-(b) \pm \sqrt{(b)^2 - 4ac}}$$

$$r_{1,2} = \frac{-(4) \pm \sqrt{(4)^2 - 4 \cdot 1 \cdot 1}}{2a}$$

$$= \frac{-4 \pm \sqrt{16 - 4}}{2a}$$

$$= \frac{-(4) \pm \sqrt{(4)^2 - 4 \cdot 1}}{\frac{2 \cdot 1}{2}}$$
$$= \frac{-4 \pm \sqrt{16 - 4}}{2}$$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of:

rand Figure 1 says
$$r_1$$
 and r_2 are 1 the results $r_{1,2} = \frac{ax^2 + bx + c = 0}{-(b) \pm \sqrt{(b)^2 - 4ac}}$

$$r_{1,2} = \frac{-(4) \pm \sqrt{(4)^2 - 4 \cdot 1 \cdot 1}}{\frac{2 \cdot 1}{4ac}}$$

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{\frac{2a}{2a}}$$

$$r_{1,2} = \frac{-(4) \pm \sqrt{(4)^2 - 4 \cdot 1 \cdot 1}}{\frac{2 \cdot 1}{2}}$$

$$= \frac{-4 \pm \sqrt{16 - 4}}{\frac{2}{-4 \pm \sqrt{12}}}$$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of:

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

$$r_{1,2} = \frac{-(4) \pm \sqrt{(4)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1}$$

$$= \frac{-4 \pm \sqrt{16 - 4}}{2}$$

$$= \frac{-4 \pm \sqrt{12}}{2}$$

The solutions to
$$x^2 + 4x + 1 = 0$$
 are: $x = r_{1,2} = \frac{-4 \pm \sqrt{12}}{2}$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of:

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{\frac{2a}{2a}}$$

$$r_{1,2} = \frac{-(4) \pm \sqrt{(4)^2 - 4 \cdot 1 \cdot 1}}{\frac{2 \cdot 1}{2}}$$

$$= \frac{-4 \pm \sqrt{16 - 4}}{\frac{2}{2}}$$

$$= \frac{-4 \pm \sqrt{12}}{2}$$

The solutions to
$$x^2 + 4x + 1 = 0$$
 are: $x = r_{1,2} = \frac{-4 \pm \sqrt{12}}{2}$

We can make this nicer if we notice: $\sqrt{12} = \sqrt{4 \cdot 3}$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of:

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{\frac{2a}{(4) \pm \sqrt{(4)^2 - 4 \cdot 1 \cdot 1}}}$$

$$r_{1,2} = \frac{-(4) \pm \sqrt{(4)^2 - 4 \cdot 1 \cdot 1}}{\frac{2 \cdot 1}{2}}$$

$$= \frac{-4 \pm \sqrt{16 - 4}}{\frac{2}{2}}$$

$$= \frac{-4 \pm \sqrt{12}}{2}$$

The solutions to $x^2 + 4x + 1 = 0$ are: $x = r_{1,2} = \frac{-4 \pm \sqrt{12}}{2}$

We can make this nicer if we notice: $\sqrt{12} = \sqrt{4 \cdot 3} = \sqrt{4} \cdot \sqrt{3}$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of:

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

$$r_{1,2} = \frac{-(4) \pm \sqrt{(4)^2 - 4 \cdot 1 \cdot 1}}{2a}$$

$$= \frac{-4 \pm \sqrt{16 - 4}}{2}$$

$$= \frac{-4 \pm \sqrt{12}}{2}$$

The solutions to
$$x^2 + 4x + 1 = 0$$
 are: $x = r_{1,2} = \frac{-4 \pm \sqrt{12}}{2}$

We can make this nicer if we notice: $\sqrt{12} = \sqrt{4 \cdot 3} = \sqrt{4} \cdot \sqrt{3} = 2\sqrt{3}$

Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of:

$$r_{1,2} = \frac{ax^2 + bx + c = 0}{-(b) \pm \sqrt{(b)^2 - 4ac}}$$

$$r_{1,2} = \frac{-(4) \pm \sqrt{(4)^2 - 4 \cdot 1 \cdot 1}}{2}$$

$$= \frac{-4 \pm \sqrt{16 - 4}}{2}$$

$$= \frac{-4 \pm \sqrt{12}}{2}$$

The solutions to
$$x^2 + 4x + 1 = 0$$
 are: $x = r_{1,2} = \frac{-4 \pm \sqrt{12}}{2}$

We can make this nicer if we notice: $\sqrt{12} = \sqrt{4 \cdot 3} = \sqrt{4} \cdot \sqrt{3} = 2\sqrt{3}$ $r_{1,2} = \frac{-4 \pm 2\sqrt{3}}{2}$

$$\frac{4\pm2\sqrt{3}}{2}$$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of:

$$r_{1,2} = \frac{ax^2 + bx + c = 0}{-(b) \pm \sqrt{(b)^2 - 4ac}}$$

$$r_{1,2} = \frac{-(4) \pm \sqrt{(4)^2 - 4 \cdot 1 \cdot 1}}{2a}$$

$$= \frac{-4 \pm \sqrt{16 - 4}}{2}$$

$$= \frac{-4 \pm \sqrt{12}}{2}$$

The solutions to $x^2 + 4x + 1 = 0$ are: $x = r_{1,2} = \frac{-4 \pm \sqrt{12}}{2}$

We can make this nicer if we notice: $\sqrt{12} = \sqrt{4 \cdot 3} = \sqrt{4} \cdot \sqrt{3} = 2\sqrt{3}$ $-4 \pm 2\sqrt{3}$

$$r_{1,2} = \frac{-4 \pm 2\sqrt{3}}{2} \\ = -2 \pm \sqrt{3}$$

Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of:

$$r_{1,2} = \frac{ax^2 + bx + c = 0}{-(b) \pm \sqrt{(b)^2 - 4ac}}$$

$$r_{1,2} = \frac{-(4) \pm \sqrt{(4)^2 - 4 \cdot 1 \cdot 1}}{\frac{2 \cdot 1}{2}}$$

$$= \frac{-4 \pm \sqrt{16 - 4}}{2}$$

$$= \frac{-4 \pm \sqrt{12}}{2}$$

The solutions to $x^2 + 4x + 1 = 0$ are: $x = r_{1,2} = \frac{-4 \pm \sqrt{12}}{2}$

We can make this nicer if we notice: $\sqrt{12} = \sqrt{4 \cdot 3} = \sqrt{4} \cdot \sqrt{3} = 2\sqrt{3}$ $r_{1,2} = \frac{-4 \pm 2\sqrt{3}}{2}$

The solutions to $x^2 + 4x + 1 = 0$ are: $x = r_{1,2} = -2 \pm \sqrt{3}$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of:

$$r_{1,2} = \frac{ax^2 + bx + c = 0}{-(b) \pm \sqrt{(b)^2 - 4ac}}$$

$$r_{1,2} = \frac{-(4) \pm \sqrt{(4)^2 - 4 \cdot 1 \cdot 1}}{2}$$

$$= \frac{-4 \pm \sqrt{16 - 4}}{2}$$

$$= \frac{-4 \pm \sqrt{12}}{2}$$

The solutions to $x^2 + 4x + 1 = 0$ are: $x = r_{1,2} = \frac{-4 \pm \sqrt{12}}{2}$

We can make this nicer if we notice: $\sqrt{12}=\sqrt{4\cdot 3}=\sqrt[4]{4\cdot \sqrt{3}}=2\sqrt{3}$ $r_{1,2}=\frac{-4\pm 2\sqrt{3}}{2}$

$$=-2\pm\sqrt{3}$$
 The solutions to $x^2+4x+1=0$ are: $x=r_{1,2}=-2\pm\sqrt{3}$

• Recall: We were unable to solve this factoring

Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^{2} + bx + c = 0$

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{\frac{2a}{2a}}$$

$$r_{1,2} = \frac{-(4) \pm \sqrt{(4)^2 - 4 \cdot 1 \cdot 1}}{\frac{2 \cdot 1}{2}}$$

$$= \frac{-4 \pm \sqrt{16 - 4}}{\frac{2}{2}}$$

$$= \frac{-4 \pm \sqrt{12}}{2}$$

The solutions to
$$x^2 + 4x + 1 = 0$$
 are: $x = r_{1,2} = \frac{-4 \pm \sqrt{12}}{2}$
We can make this nicer if we notice: $\sqrt{12} = \sqrt{4 \cdot 3} = \sqrt{4} \cdot \sqrt{4}$

 $r_{1,2} = \frac{-4 \pm 2\sqrt{3}}{2}$ $= -2 + \sqrt{3}$

We can make this nicer if we notice: $\sqrt{12} = \sqrt{4 \cdot 3} = \sqrt{4} \cdot \sqrt{3} = 2\sqrt{3}$

The solutions to $x^2 + 4x + 1 = 0$ are: $x = r_{1,2} = -2 \pm \sqrt{3}$ Recall: We were unable to solve this factoring It took us much longer to solve without the quadratic formula