Recall: The Quadratic Formula says r_1 and r_2 are the roots of: $ax^2 + bx + c = 0$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of:

$$r_{1,2} = \frac{ax^2 + bx + c = 0}{-(b) \pm \sqrt{(b)^2 - 4ac}}$$

Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of:

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{\frac{2a}{2a}}$$

$$r_{1,2} = \frac{-(1) \pm \sqrt{(1)^2 - 4 \cdot 3 \cdot 0}}{2 \cdot 3}$$

Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of:

says
$$r_1$$
 and r_2 are r_1 the roots of $ax^2 + bx + c = 0$

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

$$r_{1,2} = \frac{-(1) \pm \sqrt{(1)^2 - 4 \cdot 3 \cdot 0}}{2 \cdot 3}$$

$$= \frac{-1 \pm \sqrt{1}}{6}$$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of:

e Quadratic Formula says
$$r_1$$
 and r_2 are the roots
$$ax^2 + bx + c = 0$$

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

$$r_{1,2} = \frac{-(1) \pm \sqrt{(1)^2 - 4 \cdot 3 \cdot 0}}{2 \cdot 3}$$

$$-1 \pm \sqrt{1}$$

$$r_{1,2} = \frac{2a}{r_{1,2}} = \frac{-(1) \pm \sqrt{(1)^2 - 4 \cdot 3 \cdot 6}}{2 \cdot 3} = \frac{-1 \pm \sqrt{1}}{6}$$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of:

says
$$r_1$$
 and r_2 are the roots $ax^2+bx+c=0$
$$r_{1,2}=\frac{-(b)\pm\sqrt{(b)^2-4ac}}{2a}$$

$$r_{1,2}=\frac{-(1)\pm\sqrt{(1)^2-4\cdot3\cdot0}}{2\cdot3}$$

$$=\frac{-1\pm\sqrt{1}}{6}$$

$$r_{1,2} = \frac{7 + \sqrt{7}}{2 \cdot 3}$$

$$= \frac{-1 \pm \sqrt{1}}{6}$$

$$= \frac{-1 \pm 1}{6}$$

 $=\frac{0}{6}$ and $\frac{-2}{6}$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of:

The Quadratic Formula says
$$r_1$$
 and r_2 are the roots
$$ax^2 + bx + c = 0$$

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

$$r_{1,2} = \frac{-(1) \pm \sqrt{(1)^2 - 4 \cdot 3 \cdot 0}}{2 \cdot 3}$$

$$= \frac{-1 \pm \sqrt{1}}{6}$$

$$= \frac{6}{6}$$

$$= \frac{-1 \pm 1}{6}$$

$$= \frac{0}{6} \text{ and } \frac{-2}{6}$$

$$= 0 \text{ and } \frac{-1}{3}$$

Recall: The ullet Quadratic Formula says r_1 and r_2 are ullet the roots of:

$$r_{1,2} = \frac{ax^2 + bx + c = 0}{-(b) \pm \sqrt{(b)^2 - 4ac}}$$

$$r_{1,2} = \frac{-(1) \pm \sqrt{(1)^2 - 4 \cdot 3 \cdot 0}}{2 \cdot 3}$$

$$= \frac{-1 \pm \sqrt{1}}{6}$$

$$= \frac{-1 \pm 1}{6}$$

$$= \frac{0}{6} \text{ and } \frac{-2}{6}$$

$$= 0 \text{ and } \frac{-1}{3}$$

The solutions to $3x^2 + x = 0$ are: $x = r_{1,2} = 0, \frac{-1}{3}$