Recall: The $\sqrt{\ }$ [Quadratic Formula](http://coobermath.com/Quadratics/Solving_1_Variable/Quadratic_Formula/Building_Quad_formula.pdf) says r_1 and r_2 are $\sqrt{\ }$ [the roots](http://coobermath.com/Quadratics/Solving_1_Variable/Factoring/Define_Roots.pdf) of: $ax^{2} + bx + c = 0$

Recall: The **Quadratic Formula** says
$$
r_1
$$
 and r_2 are **the roots** of:
\n
$$
ax^2 + bx + c = 0
$$
\n
$$
r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}
$$

We saw in [Example 8](http://coobermath.com/Quadratics/Solving_1_Variable/Quadratic_Formula/Example_8.pdf) that if $b^2 - 4ac = 0$ then we have one real solution of Multiplicity 2.

Recall: The **(** Quadratic Formula) says
$$
r_1
$$
 and r_2 are **(** the roots) of:
\n
$$
ax^2 + bx + c = 0
$$
\n
$$
r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}
$$

We saw in [Example 8](http://coobermath.com/Quadratics/Solving_1_Variable/Quadratic_Formula/Example_8.pdf) that if $b^2 - 4ac = 0$ then we have one real solution of Multiplicity 2.

We saw in $\overline{}$ [Example 9](http://coobermath.com/Quadratics/Solving_1_Variable/Quadratic_Formula/Example_9.pdf)) that if $b^2-4ac < 0$ then we have no real solutions.

Recall: The **(** Quadratic Formula) says
$$
r_1
$$
 and r_2 are **(** the roots) of:
\n
$$
ax^2 + bx + c = 0
$$
\n
$$
r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}
$$

We saw in [Example 8](http://coobermath.com/Quadratics/Solving_1_Variable/Quadratic_Formula/Example_8.pdf) that if $b^2 - 4ac = 0$ then we have one real solution of Multiplicity 2.

We saw in $\overline{}$ [Example 9](http://coobermath.com/Quadratics/Solving_1_Variable/Quadratic_Formula/Example_9.pdf)) that if $b^2-4ac < 0$ then we have no real solutions. If $b^2 - 4ac > 0$ then we can compute the square root.

Recall: The
$$
(\cdot \text{ Quadratic Formula})
$$
 says r_1 and r_2 are $(\cdot \text{ the roots})$ of:
\n
$$
ax^2 + bx + c = 0
$$
\n
$$
r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}
$$

We saw in [Example 8](http://coobermath.com/Quadratics/Solving_1_Variable/Quadratic_Formula/Example_8.pdf) that if $b^2 - 4ac = 0$ then we have one real solution of Multiplicity 2.

We saw in $\overline{}$ [Example 9](http://coobermath.com/Quadratics/Solving_1_Variable/Quadratic_Formula/Example_9.pdf)) that if $b^2-4ac < 0$ then we have no real solutions. If $b^2 - 4ac > 0$ then we can compute the square root.

Since $\sqrt{b^2 - 4ac} > 0$ adding and subtracting this number will give two distinct real solutions.

Recall: The
$$
(\cdot \text{ Quadratic Formula})
$$
 says r_1 and r_2 are $(\cdot \text{ the roots})$ of:
\n
$$
ax^2 + bx + c = 0
$$
\n
$$
r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}
$$

We saw in [Example 8](http://coobermath.com/Quadratics/Solving_1_Variable/Quadratic_Formula/Example_8.pdf) that if $b^2 - 4ac = 0$ then we have one real solution of Multiplicity 2.

We saw in $\overline{}$ [Example 9](http://coobermath.com/Quadratics/Solving_1_Variable/Quadratic_Formula/Example_9.pdf)) that if $b^2-4ac < 0$ then we have no real solutions. If $b^2 - 4ac > 0$ then we can compute the square root.

Since $\sqrt{b^2 - 4ac} > 0$ adding and subtracting this number will give two distinct real solutions.

This means that we can determine what type of solutions we get from a quadratic equation based on b^2-4ac

Recall: The
$$
(\cdot \text{ Quadratic Formula})
$$
 says r_1 and r_2 are $(\cdot \text{ the roots})$ of:
\n
$$
ax^2 + bx + c = 0
$$
\n
$$
r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}
$$

We saw in [Example 8](http://coobermath.com/Quadratics/Solving_1_Variable/Quadratic_Formula/Example_8.pdf) that if $b^2 - 4ac = 0$ then we have one real solution of Multiplicity 2.

We saw in $\overline{}$ [Example 9](http://coobermath.com/Quadratics/Solving_1_Variable/Quadratic_Formula/Example_9.pdf)) that if $b^2-4ac < 0$ then we have no real solutions. If $b^2 - 4ac > 0$ then we can compute the square root.

Since $\sqrt{b^2 - 4ac} > 0$ adding and subtracting this number will give two distinct real solutions.

This means that we can determine what type of solutions we get from a quadratic equation based on b^2-4ac

Because $b^2 - 4ac$ plays an important role in our solutions, it gets a special name.

Recall: The **(** Quadratic Formula) says
$$
r_1
$$
 and r_2 are **(** the roots) of:
\n
$$
ax^2 + bx + c = 0
$$
\n
$$
r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}
$$

We saw in [Example 8](http://coobermath.com/Quadratics/Solving_1_Variable/Quadratic_Formula/Example_8.pdf) that if $b^2 - 4ac = 0$ then we have one real solution of Multiplicity 2.

We saw in $\overline{}$ [Example 9](http://coobermath.com/Quadratics/Solving_1_Variable/Quadratic_Formula/Example_9.pdf)) that if $b^2-4ac < 0$ then we have no real solutions. If $b^2 - 4ac > 0$ then we can compute the square root.

Since $\sqrt{b^2 - 4ac} > 0$ adding and subtracting this number will give two distinct real solutions.

This means that we can determine what type of solutions we get from a quadratic equation based on b^2-4ac

Because $b^2 - 4ac$ plays an important role in our solutions, it gets a special name.

We call $b^2 - 4ac$ the discriminant.