Recall: The • Quadratic Formula says r_1 and r_2 are • the roots of: $ax^2 + bx + c = 0$

Recall: The Quadratic Formula says
$$r_1$$
 and r_2 are the roots of:

$$ax^2 + bx + c = 0$$

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

We saw in **Example 8** that if $b^2 - 4ac = 0$ then we have one real solution of Multiplicity 2.

Recall: The Quadratic Formula says
$$r_1$$
 and r_2 are the roots of:

$$ax^2 + bx + c = 0$$

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

We saw in **Example 8** that if $b^2 - 4ac = 0$ then we have one real solution of Multiplicity 2.

We saw in **Example** that if $b^2 - 4ac < 0$ then we have no real solutions.

Recall: The Quadratic Formula says
$$r_1$$
 and r_2 are the roots of:

$$ax^2 + bx + c = 0$$

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

We saw in **Example 8** that if $b^2 - 4ac = 0$ then we have one real solution of Multiplicity 2.

We saw in Example 9 that if $b^2 - 4ac < 0$ then we have no real solutions. If $b^2 - 4ac > 0$ then we can compute the square root.

Recall: The Quadratic Formula says
$$r_1$$
 and r_2 are the roots of:

$$ax^2 + bx + c = 0$$

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

We saw in **Example 8** that if $b^2 - 4ac = 0$ then we have one real solution of Multiplicity 2.

We saw in Example 9 that if $b^2 - 4ac < 0$ then we have no real solutions. If $b^2 - 4ac > 0$ then we can compute the square root.

Since $\sqrt{b^2 - 4ac} > 0$ adding and subtracting this number will give two distinct real solutions.

Recall: The Quadratic Formula says
$$r_1$$
 and r_2 are the roots of:

$$ax^2 + bx + c = 0$$

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

We saw in **Example 8** that if $b^2 - 4ac = 0$ then we have one real solution of Multiplicity 2.

We saw in Example 9 that if $b^2 - 4ac < 0$ then we have no real solutions. If $b^2 - 4ac > 0$ then we can compute the square root.

Since $\sqrt{b^2 - 4ac} > 0$ adding and subtracting this number will give two distinct real solutions.

This means that we can determine what type of solutions we get from a quadratic equation based on $b^2 - 4ac$

Recall: The Quadratic Formula says
$$r_1$$
 and r_2 are the roots of:

$$ax^2 + bx + c = 0$$

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

We saw in **Example 8** that if $b^2 - 4ac = 0$ then we have one real solution of Multiplicity 2.

We saw in Example 9 that if $b^2 - 4ac < 0$ then we have no real solutions. If $b^2 - 4ac > 0$ then we can compute the square root.

Since $\sqrt{b^2 - 4ac} > 0$ adding and subtracting this number will give two distinct real solutions.

This means that we can determine what type of solutions we get from a quadratic equation based on $b^2 - 4ac$

Because $b^2 - 4ac$ plays an important role in our solutions, it gets a special name.

Recall: The Quadratic Formula says
$$r_1$$
 and r_2 are the roots of:

$$ax^2 + bx + c = 0$$

$$r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$$

We saw in **Example 8** that if $b^2 - 4ac = 0$ then we have one real solution of Multiplicity 2.

We saw in Example 9 that if $b^2 - 4ac < 0$ then we have no real solutions. If $b^2 - 4ac > 0$ then we can compute the square root.

Since $\sqrt{b^2 - 4ac} > 0$ adding and subtracting this number will give two distinct real solutions.

This means that we can determine what type of solutions we get from a quadratic equation based on $b^2 - 4ac$

Because $b^2 - 4ac$ plays an important role in our solutions, it gets a special name.

We call $b^2 - 4ac$ the discriminant.