Example: Find solutions to:

 $x^2 + 4x + 3 = 0$

Example: Find solutions to:

 $x^2 + 4x + 3 = 0$

To solve this, we want to write $x^2 + 4x + 3 = (x + s) \cdot (x + t)$

Example: Find solutions to:

 $x^2 + 4x + 3 = 0$

To solve this, we want to write $x^2 + 4x + 3 = (x + s) \cdot (x + t)$ This is called factored form.

Example: Find solutions to:

 $x^{2} + 4x + 3 = 0$ To solve this, we want to write $x^{2} + 4x + 3 = (x + s) \cdot (x + t)$ This is called factored form. We need to find what s and t are.

Example: Find solutions to:

 $x^{2} + 4x + 3 = 0$ To solve this, we want to write $x^{2} + 4x + 3 = (x + s) \cdot (x + t)$ This is called factored form. We need to find what s and t are.

• As before) we distribute the right hand side to get:

Example: Find solutions to:

 $x^{2} + 4x + 3 = 0$ To solve this, we want to write $x^{2} + 4x + 3 = (x + s) \cdot (x + t)$ This is called factored form. We need to find what *s* and *t* are. • As before we distribute the right hand side to get:

 $x^{2} + 4x + 3 = (x + s) \cdot (x + t) = x^{2} + (s + t)x + st$

Example: Find solutions to:

 $x^{2} + 4x + 3 = 0$ To solve this, we want to write $x^{2} + 4x + 3 = (x + s) \cdot (x + t)$ This is called factored form. We need to find what *s* and *t* are. • As before we distribute the right hand side to get:

 $x^2 + 4x + 3 = (x + s) \cdot (x + t) = x^2 + (s + t)x + st$ To make sure both sides are the same, we need s + t = 4 and $s \cdot t = 3$

Example: Find solutions to:

 $x^{2} + 4x + 3 = 0$ To solve this, we want to write $x^{2} + 4x + 3 = (x + s) \cdot (x + t)$ This is called factored form. We need to find what *s* and *t* are. • As before we distribute the right hand side to get:

 $x^2 + 4x + 3 = (x + s) \cdot (x + t) = x^2 + (s + t)x + st$ To make sure both sides are the same, we need s + t = 4 and $s \cdot t = 3$ Let's start by thinking of all pairs of integers s and t can be multiplied together so: $s \cdot t = 3$

Example: Find solutions to:

 $x^2 + 4x + 3 = 0$ To solve this, we want to write $x^2 + 4x + 3 = (x + s) \cdot (x + t)$ This is called factored form. We need to find what s and t are. As before we distribute the right hand side to get: $x^{2} + 4x + 3 = (x + s) \cdot (x + t) = x^{2} + (s + t)x + st$ To make sure both sides are the same, we need s + t = 4 and $s \cdot t = 3$ Let's start by thinking of all pairs of integers s and t can be multiplied together so: $s \cdot t = 3$ Factors of 3 are: $1 \cdot 3 = 3$ $-1 \cdot (-3) = 3$

Example: Find solutions to:

 $x^2 + 4x + 3 = 0$ To solve this, we want to write $x^2 + 4x + 3 = (x + s) \cdot (x + t)$ This is called factored form. We need to find what s and t are. As before we distribute the right hand side to get: $x^{2} + 4x + 3 = (x + s) \cdot (x + t) = x^{2} + (s + t)x + st$ To make sure both sides are the same, we need s + t = 4 and $s \cdot t = 3$ Let's start by thinking of all pairs of integers s and t can be multiplied together so: $s \cdot t = 3$ Factors of 3 are: $1 \cdot 3 = 3$ and 1 + 3 = 4 $-1 \cdot (-3) = 3$

Example: Find solutions to:

 $x^2 + 4x + 3 = 0$ To solve this, we want to write $x^2 + 4x + 3 = (x + s) \cdot (x + t)$ This is called factored form. We need to find what s and t are. As before we distribute the right hand side to get: $x^{2} + 4x + 3 = (x + s) \cdot (x + t) = x^{2} + (s + t)x + st$ To make sure both sides are the same, we need s + t = 4 and $s \cdot t = 3$ Let's start by thinking of all pairs of integers s and t can be multiplied together so: $s \cdot t = 3$ Factors of 3 are: $1 \cdot 3 = 3$ and 1 + 3 = 4 $-1 \cdot (-3) = 3$ s, t = 1, 3

Example: Find solutions to:

 $x^2 + 4x + 3 = 0$ To solve this, we want to write $x^2 + 4x + 3 = (x + s) \cdot (x + t)$ This is called factored form. We need to find what s and t are. As before we distribute the right hand side to get: $x^{2} + 4x + 3 = (x + s) \cdot (x + t) = x^{2} + (s + t)x + st$ To make sure both sides are the same, we need s + t = 4 and $s \cdot t = 3$ Let's start by thinking of all pairs of integers s and t can be multiplied together so: $s \cdot t = 3$ Factors of 3 are: $1 \cdot 3 = 3$ and 1 + 3 = 4 $-1 \cdot (-3) = 3$ *s*. *t* = 1, 3 So, we can write $x^2 + 4x + 3$ as:

Example: Find solutions to:

 $x^2 + 4x + 3 = 0$ To solve this, we want to write $x^2 + 4x + 3 = (x + s) \cdot (x + t)$ This is called factored form. We need to find what s and t are. As before we distribute the right hand side to get: $x^{2} + 4x + 3 = (x + s) \cdot (x + t) = x^{2} + (s + t)x + st$ To make sure both sides are the same, we need s + t = 4 and $s \cdot t = 3$ Let's start by thinking of all pairs of integers s and t can be multiplied together so: $s \cdot t = 3$ Factors of 3 are: $1 \cdot 3 = 3$ and 1 + 3 = 4 $-1 \cdot (-3) = 3$ *s*. *t* = 1, 3 So, we can write $x^2 + 4x + 3$ as: $x^{2} + 4x + 3 = (x + 1) \cdot (x + 3)$

Example: Find solutions to:

 $x^2 + 4x + 3 = 0$ To solve this, we want to write $x^2 + 4x + 3 = (x + s) \cdot (x + t)$ This is called factored form. We need to find what s and t are. As before we distribute the right hand side to get: $x^{2} + 4x + 3 = (x + s) \cdot (x + t) = x^{2} + (s + t)x + st$ To make sure both sides are the same, we need s + t = 4 and $s \cdot t = 3$ Let's start by thinking of all pairs of integers s and t can be multiplied together so: $s \cdot t = 3$ Factors of 3 are: $1 \cdot 3 = 3$ and 1 + 3 = 4 $-1 \cdot (-3) = 3$ *s*. *t* = 1, 3 So, we can write $x^2 + 4x + 3$ as: $x^{2} + 4x + 3 = (x + 1) \cdot (x + 3)$

Remember, we want to solve:

Example: Find solutions to:

 $x^2 + 4x + 3 = 0$ To solve this, we want to write $x^2 + 4x + 3 = (x + s) \cdot (x + t)$ This is called factored form. We need to find what s and t are. As before we distribute the right hand side to get: $x^{2} + 4x + 3 = (x + s) \cdot (x + t) = x^{2} + (s + t)x + st$ To make sure both sides are the same, we need s + t = 4 and $s \cdot t = 3$ Let's start by thinking of all pairs of integers s and t can be multiplied together so: $s \cdot t = 3$ Factors of 3 are: $1 \cdot 3 = 3$ and 1 + 3 = 4 $-1 \cdot (-3) = 3$ s, t = 1, 3So, we can write $x^2 + 4x + 3$ as: $x^{2} + 4x + 3 = (x + 1) \cdot (x + 3)$ Remember, we want to solve: $0 = x^2 + 4x + 3 = (x + 1) \cdot (x + 3)$

Example: Find solutions to:

 $x^2 + 4x + 3 = 0$ To solve this, we want to write $x^2 + 4x + 3 = (x + s) \cdot (x + t)$ This is called factored form. We need to find what s and t are. As before we distribute the right hand side to get: $x^{2} + 4x + 3 = (x + s) \cdot (x + t) = x^{2} + (s + t)x + st$ To make sure both sides are the same, we need s + t = 4 and $s \cdot t = 3$ Let's start by thinking of all pairs of integers s and t can be multiplied together so: $s \cdot t = 3$ Factors of 3 are: $1 \cdot 3 = 3$ and 1 + 3 = 4 $-1 \cdot (-3) = 3$ *s*. *t* = 1, 3 So, we can write $x^2 + 4x + 3$ as: $x^{2} + 4x + 3 = (x + 1) \cdot (x + 3)$ Remember, we want to solve: $0 = x^2 + 4x + 3 = (x + 1) \cdot (x + 3)$ Using The Zero Product Property we get [x + 1 = 0 or x + 3 = 0]

Example: Find solutions to:

 $x^2 + 4x + 3 = 0$ To solve this, we want to write $x^2 + 4x + 3 = (x + s) \cdot (x + t)$ This is called factored form. We need to find what s and t are. As before we distribute the right hand side to get: $x^{2} + 4x + 3 = (x + s) \cdot (x + t) = x^{2} + (s + t)x + st$ To make sure both sides are the same, we need s + t = 4 and $s \cdot t = 3$ Let's start by thinking of all pairs of integers s and t can be multiplied together so: $s \cdot t = 3$ Factors of 3 are: $1 \cdot 3 = 3$ and 1 + 3 = 4 $-1 \cdot (-3) = 3$ s, t = 1, 3So, we can write $x^2 + 4x + 3$ as: $x^{2} + 4x + 3 = (x + 1) \cdot (x + 3)$ Remember, we want to solve: $0 = x^2 + 4x + 3 = (x + 1) \cdot (x + 3)$ Using The Zero Product Property we get [x + 1 = 0 or x + 3 = 0]The solutions to $0 = x^2 + 4x + 3$ are x = -1, -3