Pythagorean Theorem states that for right triangles:

Pythagorean Theorem states that for right triangles: if a and b are the legs' lengths and h the hypotenuse, then

Pythagorean Theorem states that for right triangles: if *a* and *b* are the legs' lengths and *h* the hypotenuse, then $b^{2} = b^{2} + b^{2}$

 $h^2 = a^2 + b^2$

Pythagorean Theorem states that for right triangles: if **a** and **b** are the legs' lengths and h the hypotenuse, then $h^2 = a^2 + b^2$

Proof:

Pythagorean Theorem states that for right triangles: if **a** and **b** are the legs' lengths and h the hypotenuse, then $h^2 = a^2 + b^2$

Proof:

Pythagorean Theorem states that for right triangles: if *a* and *b* are the legs' lengths and *h* the hypotenuse, then $h^2 = a^2 + b^2$

Proof:

We label the angles α and β

Pythagorean Theorem states that for right triangles: if *a* and *b* are the legs' lengths and *h* the hypotenuse, then $h^2 = a^2 + b^2$

Proof:

We label the angles α and β We bring h^2 into the picture

Pythagorean Theorem states that for right triangles: if *a* and *b* are the legs' lengths and *h* the hypotenuse, then $h^2 = a^2 + b^2$

Proof:

We label the angles α and β We bring h^2 into the picture

Pythagorean Theorem states that for right triangles: if *a* and *b* are the legs' lengths and *h* the hypotenuse, then $h^2 = a^2 + b^2$

Proof:

We label the angles α and β We bring h^2 into the picture To begin our next square, we extend *b* by length *a*

Pythagorean Theorem states that for right triangles: if *a* and *b* are the legs' lengths and *h* the hypotenuse, then $h^2 = a^2 + b^2$

Proof:

We label the angles α and β We bring h^2 into the picture To begin our next square, we extend *b* by length *a*

Pythagorean Theorem states that for right triangles: if *a* and *b* are the legs' lengths and *h* the hypotenuse, then $h^2 = a^2 + h^2$

Proof:

We label the angles α and β We bring h^2 into the picture To begin our next square, we extend *b* by length *a* To find this angle, we use that $90 + \alpha + \beta = 180$ And $90 + \alpha + ? = 180$

Pythagorean Theorem states that for right triangles: if *a* and *b* are the legs' lengths and *h* the hypotenuse, then $h^2 = a^2 + h^2$

Proof:

We label the angles α and β We bring h^2 into the picture To begin our next square, we extend *b* by length *a* To find this angle, we use that $90 + \alpha + \beta = 180$ And $90 + \alpha + ? = 180$

Pythagorean Theorem states that for right triangles: if *a* and *b* are the legs' lengths and *h* the hypotenuse, then $h^2 = a^2 + b^2$

Proof:

We label the angles α and β We bring h^2 into the picture To begin our next square, we extend *b* by length *a* To find this angle, we use that $90 + \alpha + \beta = 180$ And $90 + \alpha + ? = 180$ We complete this triangle

Pythagorean Theorem states that for right triangles: if *a* and *b* are the legs' lengths and *h* the hypotenuse, then $h^2 = a^2 + b^2$

Proof:

We label the angles α and β We bring h^2 into the picture To begin our next square, we extend *b* by length *a* To find this angle, we use that $90 + \alpha + \beta = 180$ And $90 + \alpha + ? = 180$ We complete this triangle The triangles share h, β, a

Pythagorean Theorem states that for right triangles: if a and b are the legs' lengths and h the hypotenuse, then $h^2 = a^2 + b^2$

Proof:

We label the angles α and β We bring h^2 into the picture To begin our next square, we extend b by length a To find this angle, we use that $90 + \alpha + \beta = 180$ And $90 + \alpha + ? = 180$ We complete this triangle The triangles share h, β, a The triangles are congruent

Pythagorean Theorem states that for right triangles: if a and b are the legs' lengths and h the hypotenuse, then

We label the angles α and β We bring h^2 into the picture To begin our next square, we extend b by length a To find this angle, we use that $90 + \alpha + \beta = 180$ And $90 + \alpha + ? = 180$ We complete this triangle The triangles share h, β, a The triangles are congruent Continuing this process

 $h^2 = a^2 + b^2$

Pythagorean Theorem states that for right triangles: if *a* and *b* are the legs' lengths and *h* the hypotenuse, then $h^2 = a^2 + b^2$

We label the angles α and β We bring h^2 into the picture To begin our next square, we extend b by length a To find this angle, we use that $90 + \alpha + \beta = 180$ And $90 + \alpha + ? = 180$ We complete this triangle The triangles share h, β, a The triangles are congruent Continuing this process

Pythagorean Theorem states that for right triangles: if *a* and *b* are the legs' lengths and *h* the hypotenuse, then $h^2 = a^2 + b^2$

We label the angles α and β We bring h^2 into the picture To begin our next square, we extend b by length a To find this angle, we use that $90 + \alpha + \beta = 180$ And $90 + \alpha + ? = 180$ We complete this triangle The triangles share h, β, a The triangles are congruent Continuing this process We get 4 congruent triangles

Pythagorean Theorem states that for right triangles: if *a* and *b* are the legs' lengths and *h* the hypotenuse, then $h^2 = a^2 + b^2$

We label the angles α and β We bring h^2 into the picture To begin our next square, we extend b by length a To find this angle, we use that $90 + \alpha + \beta = 180$ And $90 + \alpha + ? = 180$ We complete this triangle The triangles share h, β, a The triangles are congruent Continuing this process We get 4 congruent triangles Recall: $A_{\Delta} = \frac{1}{2}base \cdot height$

Pythagorean Theorem states that for right triangles: if a and b are the legs' lengths and h the hypotenuse, then

We label the angles α and β We bring h^2 into the picture To begin our next square, we extend b by length a To find this angle, we use that $90 + \alpha + \beta = 180$ And $90 + \alpha + ? = 180$ We complete this triangle The triangles share h, β, a The triangles are congruent Continuing this process We get 4 congruent triangles Recall: $A_{\Delta} = \frac{1}{2}base \cdot height$ $A_{\Delta} = \frac{1}{2} \frac{ab}{ab}$

 $h^2 = a^2 + b^2$

Pythagorean Theorem states that for right triangles: if a and b are the legs' lengths and h the hypotenuse, then

$$h^2 = a^2 + b^2$$

Summary: We get 4 congruent triangles $A_{\Delta} = \frac{1}{2}ab$

Pythagorean Theorem states that for right triangles: if *a* and *b* are the legs' lengths and *h* the hypotenuse, then $h^2 = a^2 + b^2$

Summary: We get 4 congruent triangles $A_{\Delta} = \frac{1}{2}ab$

We can compute the area of the large square by computing the area of the smaller square and four triangles

Pythagorean Theorem states that for right triangles: if a and b are the legs' lengths and h the hypotenuse, then

$$h^2 = a^2 + b^2$$

Summary: We get 4 congruent triangles $A_{\Delta} = \frac{1}{2}ab$

We can compute the area of the large square by computing the area of the smaller square and four triangles

$$A = h^2 + 4 \cdot \frac{1}{2} \frac{ab}{ab}$$

Pythagorean Theorem states that for right triangles: if a and b are the legs' lengths and h the hypotenuse, then

$$h^2 = a^2 + b^2$$

Summary: We get 4 congruent triangles $A_{\Delta} = \frac{1}{2}ab$

We can compute the area of the large square by computing the area of the smaller square and four triangles

$$A = h^2 + 4 \cdot \frac{1}{2}ab = h^2 + 2ab$$

Pythagorean Theorem states that for right triangles: if a and b are the legs' lengths and h the hypotenuse, then

$$h^2 = \frac{a^2}{b^2} + \frac{b^2}{b^2}$$

We can compute the area of the large square by computing the area of the smaller square and four triangles

$$A = h^2 + 4 \cdot \frac{1}{2}ab = h^2 + 2ab$$

Pythagorean Theorem states that for right triangles: if a and b are the legs' lengths and h the hypotenuse, then

$$h^2 = a^2 + b^2$$

We can compute the area of the large square by computing the area of the smaller square and four triangles

$$(a + b)^2 = A = h^2 + 4 \cdot \frac{1}{2}ab = h^2 + 2ab$$

Pythagorean Theorem states that for right triangles: if *a* and *b* are the legs' lengths and *h* the hypotenuse, then $h^2 = a^2 + h^2$

We can compute the area of the large square by computing the area of the smaller square and four triangles

$$a^{2} + b^{2} + 2ab = (a + b)^{2} = A = h^{2} + 4 \cdot \frac{1}{2}ab = h^{2} + 2ab$$

Pythagorean Theorem states that for right triangles: if a and b are the legs' lengths and h the hypotenuse, then

We can compute the area of the large square by computing the area of the smaller square and four triangles

$$a^{2} + b^{2} + 2ab = (a + b)^{2} = A = h^{2} + 4 \cdot \frac{1}{2}ab = h^{2} + 2ab$$

$$h^2 = a^2 + b^2$$