Example: Find solutions to the equation:

$$2^{(x+1)} = 2^{(3x-7)}$$

Example: Find solutions to the equation:

 $2^{(x+1)} = 2^{(3x-7)}$

We saw from the graph of exponential functions that $f(a) = 2^a$ is a pone-to-one function.

Example: Find solutions to the equation:

 $2^{(x+1)} = 2^{(3x-7)}$

We saw from the graph of exponential functions that $f(a) = 2^a$ is a pone-to-one function.

Which means that no two outputs can have the same input

Example: Find solutions to the equation:

 $2^{(x+1)} = 2^{(3x-7)}$

We saw from the graph of exponential functions that $f(a) = 2^a$ is a pone-to-one function.

Which means that no two outputs can have the same input

In other words, if we have the same output we must have the same input

Example: Find solutions to the equation:

 $2^{(x+1)} = 2^{(3x-7)}$

We saw from the graph of exponential functions that $f(a) = 2^a$ is a point-to-one function.

Which means that no two outputs can have the same input

In other words, if we have the same output we must have the same input Since, $2^{(x+1)} = 2^{(3x-7)}$ they must have the same input

Example: Find solutions to the equation:

 $2^{(x+1)} = 2^{(3x-7)}$

We saw from the graph of exponential functions that $f(a) = 2^a$ is a pone-to-one function.

Which means that no two outputs can have the same input

In other words, if we have the same output we must have the same input Since, $2^{(x+1)} = 2^{(3x-7)}$ they must have the same input

In other words the two side must have the same exponent

x + 1 = 3x - 7

Example: Find solutions to the equation:

 $2^{(x+1)} = 2^{(3x-7)}$

We saw from the graph of exponential functions that $f(a) = 2^a$ is a pone-to-one function.

Which means that no two outputs can have the same input

In other words, if we have the same output we must have the same input Since, $2^{(x+1)} = 2^{(3x-7)}$ they must have the same input

In other words the two side must have the same exponent

x + 1 = 3x - 7

Now we simply have a linear equation that • we can solve

Example: Find solutions to the equation:

 $2^{(x+1)} = 2^{(3x-7)}$

We saw from the graph of exponential functions that $f(a) = 2^a$ is a point-to-one function.

Which means that no two outputs can have the same input

In other words, if we have the same output we must have the same input Since, $2^{(x+1)} = 2^{(3x-7)}$ they must have the same input In other words the two side must have the same exponent

x + 1 = 3x - 7

Now we simply have a linear equation that \cdots we can solve Solving the linear equation, we get: x = 4

Example: Find solutions to the equation:

 $2^{(x+1)} = 2^{(3x-7)}$

We saw from the graph of exponential functions that $f(a) = 2^a$ is a pone-to-one function.

Which means that no two outputs can have the same input

In other words, if we have the same output we must have the same input Since, $2^{(x+1)} = 2^{(3x-7)}$ they must have the same input In other words the two side must have the same exponent

x + 1 = 3x - 7

Now we simply have a linear equation that \bullet we can solve Solving the linear equation, we get: x = 4**Conclusion:** The solution to $2^{(x+1)} = 2^{(3x-7)}$ is x = 4