
Solving Exponential Equations - Example 4 - Revisited

Example: Find the solutions to the equation:
2(x+1) = 3x

To solve for the variable x in the exponent, we need to ”undo” the
exponential using its inverse, a logarithm.

Recall: logb (xp) = p · logb (x)
This leaves us with the linear (although intimidating looking) equation:

Note: ln(2) and ln (3) are just numbers, not variables!
So, we proceed by distributing on the left hand side.
Since x shows up in two places, we collect them by Subtracting x · ln(2)

Finally, dividing by the coefficient of x which is: (ln (3) − ln(2)) gives us:

Conclusion: The solution to 2(x+1) = 3x is: x = ln(2)
(ln(3)−ln(2)) ≈ 1.7095
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