
Solving Logarithmic Equations - Example 1

Example: Find the solutions of:
log3(x + 6)− log3(x + 2) = log3(x)

To solve this equation, we will need to use our Properties of Logarithms

In particular, we can combine the two terms on left hand side using:

logb

(x
y

)
= logb(x)− logb(y)

This allows us to simplify the left hand side as:

Now, we are left with the equation:

log3

(x + 6
x + 2

)
= log3(x)

Since log3 is a one-to-one function, with inverse 3x , we can ”undo” the
log on each side by raising 3 to that power.

Which is messy! But reduces nicely because the functions are inverses!
Alternatively: the inputs of log3 are equal because log3 is one-to-one

http://coobermath.com/Exponential_Functions/Logarithms/Properties_of_Logs/Properties_of_Logrithms.pdf
http://coobermath.com/Inverse_Functions/One_to_one/1_to_1_Definition.pdf
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