
Properties of Logarithms - Proof of Property 3

We will prove the property:
logb (xp) = p · logb (x)

To prove this, we will use the property of exponents: (bm)n = bm·n

We saw that since logarithms are the inverses of exponents we have:
x = blogb(x)

Proof:
Taking the logarithm of both sides, we get:
This leaves us with our result:

logb (xp) = p · logb(x)
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