Recall: For a linear function (or line), the rate of change is called the slope and it is always the same between any two points.

For any function, y=f(x), the average rate of change between two points (x_1,y_1) and (x_2,y_2) is calculated the same as slope:

=

Note: The units of rate of change, average rate of change, and slope are all the same and are

Example 1 (Physics): Suppose that the height of a calculator thrown into the air is given by s(t). The values of the height s(t) are given by the table:

t (sec)	0	1	2	3	4
s(t) (ft)	4	63	90	85	48

Find the average rate of change of position with respect to time, which is called the average velocity, on each interval. Example 2: Find the average rate of change of $y = f x = x^2$ on the three intervals:

- (x = -1 to x=0)
- (x = 0 to x = 1)
- (x = 1 to x = 2)

-

Example 1 (Physics): Suppose that the height of a calculator thrown into the air is given by s(t). The values of the height s(t) are given by the table:

t (sec)	0	1	2	3	4
s(t) (ft)	4	63	90	85	48

Approximate the velocity at t=1

Approximation 1:

 $v(1) \approx$

Approximation 2:

 $v(1) \approx$

Approximation 3:

 $v(1) \approx$

In general, the best and quickest way to approximate the instantaneous velocity is

t (sec)	0	1	2	3	4
s(t) (ft)	4	63	90	85	48
v(t)					

t (sec)	0	0.5
s(t)	4	37.5

$$\nu$$
 0 \approx

t (sec)	0	0.1
s(t)	4	11.34

$$v \ 0 \approx$$

t (sec)	0	0.01
s(t)	4	4.7484

$$v \ 0 \approx$$

t (sec)	0	0.001
s(t)	4	4.074984

$$v \ 0 \approx$$

t (sec)	0	0.0001
s(t)	4	4.00749984

$$v \ 0 \approx$$

Δt	Approx. of $v(0)$
1	59
.5	67
.1	73.4
.01	74.84
.001	74.984
.0001	74.9984
.00001	74.99984

 $v(0) \approx$

As Δt goes to zero

 $\Delta t \to 0$

 $v \ 0 =$

- s t = position; v t = velocity
- v t = (instantaneous) rate of change of position

t = a

$$\nu(a) = \lim_{\Delta t \to o} \frac{s \ a + \Delta t \ - s(a)}{\Delta t}$$

In general: The instantaneous rate of change of f(x) at x = a is given by:

This is called the <u>derivative of f(x) at x = a</u>, and is written as f'(a).

f' a =

Example: $f x = x^2$; find f'(1)

The derivative f'(a) is:

- •
- •

Recall:
$$f' x = \lim_{\Delta x \to 0} \frac{f x + \Delta x - f x}{\Delta x}$$

Example: $f x = 2^x$

Find
$$f'(1) = \lim_{\Delta x \to 0} \frac{f + \Delta x - f + 1}{\Delta x}$$

Δx	Approx. of $f'(1)$

Recall: The derivative of the function f(x) at x = a is:

$$f' a = \lim_{\Delta x \to o} \frac{f a + \Delta x - f(a)}{\Delta x}$$

The derivative f'(a) can be interpreted as:

- the rate of change of f(x) at x = a
- the slope of line tangent to f(x) at x = a
- the slope of curve at x = a

Example: Find the equation of the line tangent to the curve $y = x^2$ at x = 1.

Slope:

Point:

