Exponential Functions

Recall: An exponential function is a function of the form:

$$f(x) = f_o a^x$$

where $f_o = f(0)$

Constant relative change for $\Delta x = 1$

That is, as x increases by 1, f(x) gets a times bigger.

$$\frac{d}{dx}(f_o a^x) =$$

$$\frac{d}{dx}(a^x)$$

Try: a = 2

 $f(x) = 2^x$

x	f'(x)	

Recall:
$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Example: $f(x) = 2^x$

Find f'(0)

 $\frac{f(0+\Delta x)-f(0)}{\Delta x}$

Δx	Approx of f '(0)

	Δx	Approx of f '(2)
Find $f'(2)$		
$\frac{f(2+\Delta x)-f(2)}{\Delta x}$		

 $f(x) = 2^x$

f'(x) =

In general:

$$\frac{d}{dx}(a^x) =$$