MATH 331 HOMEWORK 2, SEC 2.3-2.8

Problem 1: A 250 gallon tank initially contains 160 gallons of pure water. Water with a concentration of c pounds of salt per gallon is added to the tank at $2 \mathrm{gal} / \mathrm{min}$, and the resulting solution leaves at a rate of $1 \mathrm{gal} / \mathrm{min}$. What concentration c should be used so that the tank will have a concentration of $\frac{1}{4}$ pounds per gallon once it is full with 250 gallons of water in the tank?

Problem 2: Consider the following equation for a certain population of squirrels given by $P(t)$ (t is measured in years):

$$
\frac{d P}{d t}=2.08 \cdot P\left(1-\frac{P}{8}\right)\left(\frac{P}{4}-1\right)
$$

a) Find all the equilibrium points of the equations.
b) Draw the phase line and determine the stability of each equilibrium points.
c) Graph the $t P$-plane with the 6 solution curves corresponding with the equilibrium solutions and the solutions with initial conditions $P(0)=3, P(0)=5$ and $P(0)=10$.

Problem 3: The amount of money in an account, $S(t)$, which starts with $\$ S_{o}$ and grows with a continuous annual interest rate of r and continuous deposits of $\$ D$ per year can be modeled by the initial value problem:

$$
\frac{d S}{d t}=r \cdot S+D \quad S(0)=S_{o}
$$

a) Suppose that a student, upon graduation, inherits $\$ 3000000$, which they put into an investment account at age 22 and earns a continuous annual interest rate of 6% on their investments.
The student wishes to have have $\$ 24000000$ at the time that they retire. How much money can they continuously withdraw each year and still have $\$ 24000000$ at the time that they retire at age 62 ?
Note: In the case of withdrawals, $D<0$.
b) Find the amount D_{2} that someone needs to make in yearly contributions starting at age 22 to retire with the same amount of money age 62 , assuming the same 6% continuous annual interest rate on their investment but with an initial investment of $\$ 0$.
Problem 4: Find all functions $M(x, y)$ such that the equation $M(x, y)+\left(3 x^{3} y^{2}-x \sin (y)\right) \frac{d y}{d x}=0$ is exact.

