Welcome to College Algebra

## Welcome to College Algebra

We have seen some of the classical number sets:

## Welcome to College Algebra

We have seen some of the classical number sets:
$\mathbf{N}=\{1,2,3, \ldots\}$

## Welcome to College Algebra

We have seen some of the classical number sets:

$$
\begin{aligned}
& \mathbf{N}=\{1,2,3, \ldots\} \\
& \mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
\end{aligned}
$$

## Welcome to College Algebra

We have seen some of the classical number sets:
$\mathbf{N}=\{1,2,3, \ldots\}$
$\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
$\mathbf{Q}=\left\{\frac{m}{n}\right.$ so that $m$ and $n$ are integers and $\left.n \neq 0\right\}$

## Welcome to College Algebra

We have seen some of the classical number sets:
$\mathbf{N}=\{1,2,3, \ldots\}$
$\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
$\mathbf{Q}=\left\{\frac{m}{n}\right.$ so that $m$ and $n$ are integers and $\left.n \neq 0\right\}$
The Real numbers, $\mathbf{R}$


## Welcome to College Algebra

We have seen some of the classical number sets:
$\mathbf{N}=\{1,2,3, \ldots\}$
$\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
$\mathbf{Q}=\left\{\frac{m}{n}\right.$ so that $m$ and $n$ are integers and $\left.n \neq 0\right\}$
The Real numbers, $\mathbf{R}$


There are other sets, such as:

## Welcome to College Algebra

We have seen some of the classical number sets:
$\mathbf{N}=\{1,2,3, \ldots\}$
$\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
$\mathbf{Q}=\left\{\frac{m}{n}\right.$ so that $m$ and $n$ are integers and $\left.n \neq 0\right\}$
The Real numbers, $\mathbf{R}$


There are other sets, such as:
The even numbers $=\{2 n$ so that $n$ is an integer $\}$

## Welcome to College Algebra

We have seen some of the classical number sets:
$\mathbf{N}=\{1,2,3, \ldots\}$
$\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
$\mathbf{Q}=\left\{\frac{m}{n}\right.$ so that $m$ and $n$ are integers and $\left.n \neq 0\right\}$
The Real numbers, $\mathbf{R}$


There are other sets, such as:
The even numbers $=\{2 n$ so that $n$ is an integer $\}$
In general, a set is any collection of numbers.

## Welcome to College Algebra

We have seen some of the classical number sets:
$\mathbf{N}=\{1,2,3, \ldots\}$
$\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
$\mathbf{Q}=\left\{\frac{m}{n}\right.$ so that $m$ and $n$ are integers and $\left.n \neq 0\right\}$
The Real numbers, $\mathbf{R}$


There are other sets, such as:
The even numbers $=\{2 n$ so that $n$ is an integer $\}$
In general, a set is any collection of numbers.
Example 1: $\{-1,3,4\}$

## Welcome to College Algebra

We have seen some of the classical number sets:
$\mathbf{N}=\{1,2,3, \ldots\}$
$\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
$\mathbf{Q}=\left\{\frac{m}{n}\right.$ so that $m$ and $n$ are integers and $\left.n \neq 0\right\}$
The Real numbers, $\mathbf{R}$


There are other sets, such as:
The even numbers $=\{2 n$ so that $n$ is an integer $\}$
In general, a set is any collection of numbers.
Example 1: $\{-1,3,4\}$
Example 2: $\{0, \pi, 10\}$

