Welcome to College Algebra

Welcome to College Algebra

How many antelope do you have?

Welcome to College Algebra

How many antelope do you have? For most of you... probably zero.

Welcome to College Algebra

How many antelope do you have?
For most of you... probably zero.
Were you considering the fact that you had 0 antelope?

Welcome to College Algebra

How many antelope do you have?
For most of you... probably zero.
Were you considering the fact that you had 0 antelope?
Again, probably not.

Welcome to College Algebra

How many antelope do you have?
For most of you... probably zero.
Were you considering the fact that you had 0 antelope?
Again, probably not.
Just as you weren't quantifying the number of antelope you have, for a long time people understood the idea of numbers and quantifying before they included zero.

Welcome to College Algebra

How many antelope do you have?
For most of you... probably zero.
Were you considering the fact that you had 0 antelope?
Again, probably not.
Just as you weren't quantifying the number of antelope you have, for a long time people understood the idea of numbers and quantifying before they included zero.
Even now as children, we learn to count before learning about 0 as a number.

Welcome to College Algebra

How many antelope do you have?
For most of you... probably zero.
Were you considering the fact that you had 0 antelope?
Again, probably not.
Just as you weren't quantifying the number of antelope you have, for a long time people understood the idea of numbers and quantifying before they included zero.
Even now as children, we learn to count before learning about 0 as a number.
0 is not tangible. It is our first abstract number.

Welcome to College Algebra

How many antelope do you have?
For most of you... probably zero.
Were you considering the fact that you had 0 antelope?
Again, probably not.
Just as you weren't quantifying the number of antelope you have, for a long time people understood the idea of numbers and quantifying before they included zero.
Even now as children, we learn to count before learning about 0 as a number.
0 is not tangible. It is our first abstract number.
The most basic set of numbers that we learn about (both individually as children and as a society through history) is the set of Natural Numbers (denoted with N)

Welcome to College Algebra

How many antelope do you have?
For most of you... probably zero.
Were you considering the fact that you had 0 antelope?
Again, probably not.
Just as you weren't quantifying the number of antelope you have, for a long time people understood the idea of numbers and quantifying before they included zero.
Even now as children, we learn to count before learning about 0 as a number.
0 is not tangible. It is our first abstract number.
The most basic set of numbers that we learn about (both individually as children and as a society through history) is the set of Natural Numbers (denoted with N)
The Natural Numbers are all the positive whole numbers.
$\mathbf{N}=\{1,2,3, \ldots\}$

Welcome to College Algebra

How many antelope do you have?
For most of you... probably zero.
Were you considering the fact that you had 0 antelope?
Again, probably not.
Just as you weren't quantifying the number of antelope you have, for a long time people understood the idea of numbers and quantifying before they included zero.
Even now as children, we learn to count before learning about 0 as a number.
0 is not tangible. It is our first abstract number.
The most basic set of numbers that we learn about (both individually as children and as a society through history) is the set of Natural Numbers (denoted with N)
The Natural Numbers are all the positive whole numbers.
$\mathbf{N}=\{1,2,3, \ldots\}$
Note: Curly braces $\}$ are used to contain numbers in our set

Welcome to College Algebra

How many antelope do you have?
For most of you... probably zero.
Were you considering the fact that you had 0 antelope?
Again, probably not.
Just as you weren't quantifying the number of antelope you have, for a long time people understood the idea of numbers and quantifying before they included zero.
Even now as children, we learn to count before learning about 0 as a number.
0 is not tangible. It is our first abstract number.
The most basic set of numbers that we learn about (both individually as children and as a society through history) is the set of Natural Numbers (denoted with N)
The Natural Numbers are all the positive whole numbers.
$\mathbf{N}=\{1,2,3, \ldots\}$
Note: Curly braces $\}$ are used to contain numbers in our set After some time, we include 0 in our collection of numbers.

Welcome to College Algebra

How many antelope do you have?
For most of you... probably zero.
Were you considering the fact that you had 0 antelope?
Again, probably not.
Just as you weren't quantifying the number of antelope you have, for a long time people understood the idea of numbers and quantifying before they included zero.
Even now as children, we learn to count before learning about 0 as a number.
0 is not tangible. It is our first abstract number.
The most basic set of numbers that we learn about (both individually as children and as a society through history) is the set of Natural Numbers (denoted with N)
The Natural Numbers are all the positive whole numbers.
$\mathbf{N}=\{1,2,3, \ldots\}$
Note: Curly braces $\}$ are used to contain numbers in our set After some time, we include 0 in our collection of numbers. For a long time (both individually and historically) these were enough numbers.

Welcome to College Algebra
Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Now that we have these numbers, what do we do with them?

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Now that we have these numbers, what do we do with them?
Let's pretend we are hunting antelope in an ancient society.

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Now that we have these numbers, what do we do with them? Let's pretend we are hunting antelope in an ancient society. Hunting alone, numbers are great to count our antelope!

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Now that we have these numbers, what do we do with them? Let's pretend we are hunting antelope in an ancient society. Hunting alone, numbers are great to count our antelope! What if we're not alone? But hunting with a friend.

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Now that we have these numbers, what do we do with them? Let's pretend we are hunting antelope in an ancient society. Hunting alone, numbers are great to count our antelope! What if we're not alone? But hunting with a friend. Now we each want to count our antelope individually, but also want to know how much we have collectively!

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Now that we have these numbers, what do we do with them? Let's pretend we are hunting antelope in an ancient society. Hunting alone, numbers are great to count our antelope! What if we're not alone? But hunting with a friend.
Now we each want to count our antelope individually, but also want to know how much we have collectively!
Example 1: Suppose that you caught 3 and your partner 2.
We want to know; how many were caught in total?

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Now that we have these numbers, what do we do with them? Let's pretend we are hunting antelope in an ancient society. Hunting alone, numbers are great to count our antelope! What if we're not alone? But hunting with a friend.
Now we each want to count our antelope individually, but also want to know how much we have collectively!
Example 1: Suppose that you caught 3 and your partner 2.
We want to know; how many were caught in total?
Previously, we only used numbers to count things. This is the first time we try to combine two numbers!

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Now that we have these numbers, what do we do with them? Let's pretend we are hunting antelope in an ancient society. Hunting alone, numbers are great to count our antelope! What if we're not alone? But hunting with a friend.
Now we each want to count our antelope individually, but also want to know how much we have collectively!
Example 1: Suppose that you caught 3 and your partner 2.
We want to know; how many were caught in total?
Previously, we only used numbers to count things. This is the first time we try to combine two numbers!
This is where Addition is born!

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Now that we have these numbers, what do we do with them? Let's pretend we are hunting antelope in an ancient society. Hunting alone, numbers are great to count our antelope! What if we're not alone? But hunting with a friend.
Now we each want to count our antelope individually, but also want to know how much we have collectively!
Example 1: Suppose that you caught 3 and your partner 2.
We want to know; how many were caught in total?
Previously, we only used numbers to count things. This is the first time we try to combine two numbers!
This is where Addition is born!
We want to know: $3+2=$?

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Now that we have these numbers, what do we do with them? Let's pretend we are hunting antelope in an ancient society. Hunting alone, numbers are great to count our antelope! What if we're not alone? But hunting with a friend.
Now we each want to count our antelope individually, but also want to know how much we have collectively!
Example 1: Suppose that you caught 3 and your partner 2.
We want to know; how many were caught in total?
Previously, we only used numbers to count things. This is the first time we try to combine two numbers!
This is where Addition is born!
We want to know: $3+2=$?
This may seem silly/easy now, but at one point it was hard!

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Now that we have these numbers, what do we do with them? Let's pretend we are hunting antelope in an ancient society. Hunting alone, numbers are great to count our antelope! What if we're not alone? But hunting with a friend.
Now we each want to count our antelope individually, but also want to know how much we have collectively!
Example 1: Suppose that you caught 3 and your partner 2.
We want to know; how many were caught in total?
Previously, we only used numbers to count things. This is the first time we try to combine two numbers!
This is where Addition is born!
We want to know: $3+2=$?
This may seem silly/easy now, but at one point it was hard!
Counting our first 3 then our next 2 , we see that $3+2=5$

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 1: Suppose that you caught 3 and your partner 2.
We want to know: $3+2=$?
Counting our first 3 then our next 2, we see that $3+2=5$

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 1: Suppose that you caught 3 and your partner 2. We want to know: $3+2=$?
Counting our first 3 then our next 2, we see that $3+2=5$ What if we had counted our 2 first then our next 3 ?

$$
2+3=?
$$

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 1: Suppose that you caught 3 and your partner 2. We want to know: $3+2=$?
Counting our first 3 then our next 2, we see that $3+2=5$ What if we had counted our 2 first then our next 3 ?

$$
2+3=?
$$

$$
\text { Of course: } \quad 2+3=5
$$

It doesn't matter what order we add them in!

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 1: Suppose that you caught 3 and your partner 2. We want to know: $3+2=$?
Counting our first 3 then our next 2, we see that $3+2=5$ What if we had counted our 2 first then our next 3 ?

$$
2+3=?
$$

$$
\text { Of course: } \quad 2+3=5
$$

It doesn't matter what order we add them in!
This is our first property about addition.

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 1: Suppose that you caught 3 and your partner 2. We want to know: $3+2=$?
Counting our first 3 then our next 2, we see that $3+2=5$ What if we had counted our 2 first then our next 3 ?

$$
2+3=?
$$

$$
\text { Of course: } \quad 2+3=5
$$

It doesn't matter what order we add them in!
This is our first property about addition.
And there is nothing special about the numbers 2 and 3 here.

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 1: Suppose that you caught 3 and your partner 2. We want to know: $3+2=$?
Counting our first 3 then our next 2, we see that $3+2=5$ What if we had counted our 2 first then our next 3 ?

$$
\begin{array}{ll}
& 2+3=? \\
\text { Of course: } & 2+3=5
\end{array}
$$

It doesn't matter what order we add them in!
This is our first property about addition.
And there is nothing special about the numbers 2 and 3 here.
Commutative Property of Addition: For any numbers A, B

$$
A+B=B+A
$$

Welcome to College Algebra
Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 2: Hunting with your friend, again: Suppose that you caught 3 and your partner didn't catch any.

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 2: Hunting with your friend, again: Suppose that you caught 3 and your partner $\underbrace{\text { didn't catch any }}_{0}$.
(Having the number 0 comes in handy here).

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 2: Hunting with your friend, again: Suppose that you caught 3 and your partner $\underbrace{\text { didn't catch any }}_{0}$.
(Having the number 0 comes in handy here).
Again, we want to know: $3+0=$?

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 2: Hunting with your friend, again: Suppose that you caught 3 and your partner $\underbrace{\text { didn't catch any }}_{0}$.
(Having the number 0 comes in handy here).
Again, we want to know: $3+0=$?
Again, of course: $\quad 3+0=3$

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 2: Hunting with your friend, again: Suppose that you caught 3 and your partner $\underbrace{\text { didn't catch any }}_{0}$.
(Having the number 0 comes in handy here).
Again, we want to know: $3+0=$?
Again, of course: $\quad 3+0=3$
There is something special about adding 0 .

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 2: Hunting with your friend, again: Suppose that you caught 3 and your partner $\underbrace{\text { didn't catch any }}_{0}$.
(Having the number 0 comes in handy here).
Again, we want to know: $3+0=$?
Again, of course: $\quad 3+0=3$
There is something special about adding 0 .
This teaches us our next property of Addition:

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 2: Hunting with your friend, again: Suppose that you caught 3 and your partner $\underbrace{\text { didn't catch any }}_{0}$.
(Having the number 0 comes in handy here).
Again, we want to know: $3+0=$?
Again, of course: $\quad 3+0=3$
There is something special about adding 0 .
This teaches us our next property of Addition:
$\mathbf{0}$ is the Additive Identity: For any number A

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 2: Hunting with your friend, again: Suppose that you caught 3 and your partner $\underbrace{\text { didn't catch any }}_{0}$.
(Having the number 0 comes in handy here).
Again, we want to know: $3+0=$?
Again, of course: $\quad 3+0=3$
There is something special about adding 0 .
This teaches us our next property of Addition:
0 is the Additive Identity: For any number A

$$
A+0=A=0+A
$$

Welcome to College Algebra
Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 3: Since your friend has no antelope, you share!

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 3: Since your friend has no antelope, you share! You give them 1 of yours.

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 3: Since your friend has no antelope, you share!
You give them 1 of yours.
The question becomes, how many are left for you?

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 3: Since your friend has no antelope, you share!
You give them 1 of yours.
The question becomes, how many are left for you?
We want to combine our number 3 with their number 1 , but not with addition.

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 3: Since your friend has no antelope, you share!
You give them 1 of yours.
The question becomes, how many are left for you?
We want to combine our number 3 with their number 1 , but not with addition.
We need something new!

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 3: Since your friend has no antelope, you share!
You give them 1 of yours.
The question becomes, how many are left for you?
We want to combine our number 3 with their number 1 , but not with addition.
We need something new!
This is where Subtraction is born!

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 3: Since your friend has no antelope, you share!
You give them 1 of yours.
The question becomes, how many are left for you?
We want to combine our number 3 with their number 1 , but not with addition.
We need something new!
This is where Subtraction is born!
We want to know: $3-1=$?

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 3: Since your friend has no antelope, you share!
You give them 1 of yours.
The question becomes, how many are left for you?
We want to combine our number 3 with their number 1 , but not with addition.
We need something new!
This is where Subtraction is born!
We want to know: $3-1=$?
This may seem silly/easy now, but at one point it was hard!

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 3: Since your friend has no antelope, you share!
You give them 1 of yours.
The question becomes, how many are left for you?
We want to combine our number 3 with their number 1 , but not with addition.
We need something new!
This is where Subtraction is born!
We want to know: $3-1=$?
This may seem silly/easy now, but at one point it was hard!
Starting with our 3 and removing 1 , we see that $3-1=2$

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 3: Since your friend has no antelope, you share!
You give them 1 of yours.
The question becomes, how many are left for you?
We want to combine our number 3 with their number 1 , but not with addition.
We need something new!
This is where Subtraction is born!
We want to know: $3-1=$?
This may seem silly/easy now, but at one point it was hard!
Starting with our 3 and removing 1 , we see that $3-1=2$
We are just glad that we did not need to give them all 3 of our 3 , because then we would have 0 left!

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 3: Since your friend has no antelope, you share!
You give them 1 of yours.
The question becomes, how many are left for you?
We want to combine our number 3 with their number 1 , but not with addition.
We need something new!
This is where Subtraction is born!
We want to know: $3-1=$?
This may seem silly/easy now, but at one point it was hard!
Starting with our 3 and removing 1 , we see that $3-1=2$
We are just glad that we did not need to give them all 3 of our 3, because then we would have 0 left!
That is: $3-3=0$

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 3: Since your friend has no antelope, you share!
You give them 1 of yours.
The question becomes, how many are left for you?
We want to combine our number 3 with their number 1 , but not with addition.
We need something new!
This is where Subtraction is born!
We want to know: $3-1=$?
This may seem silly/easy now, but at one point it was hard!
Starting with our 3 and removing 1 , we see that $3-1=2$
We are just glad that we did not need to give them all 3 of our 3 , because then we would have 0 left!
That is: $3-3=0$
3 is not special here, this is true of any number A :

$$
A-A=0
$$

Welcome to College Algebra
Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Our first property about subtraction: For any number A :

$$
A-A=0
$$

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Our first property about subtraction: For any number A :

$$
A-A=0
$$

Remember our Commutative Property for Addition:

$$
A+B=B+A
$$

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Our first property about subtraction: For any number A :

$$
A-A=0
$$

Remember our Commutative Property for Addition:

$$
A+B=B+A
$$

Does this work for Subtraction?

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Our first property about subtraction: For any number A :

$$
A-A=0
$$

Remember our Commutative Property for Addition:

$$
A+B=B+A
$$

Does this work for Subtraction?
Let's pick two numbers and try:

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Our first property about subtraction: For any number A :

$$
A-A=0
$$

Remember our Commutative Property for Addition:

$$
A+B=B+A
$$

Does this work for Subtraction?
Let's pick two numbers and try: 5 and 3

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Our first property about subtraction: For any number A :

$$
A-A=0
$$

Remember our Commutative Property for Addition:

$$
A+B=B+A
$$

Does this work for Subtraction?
Let's pick two numbers and try: 5 and 3

$$
5-3=2
$$

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Our first property about subtraction: For any number A :

$$
A-A=0
$$

Remember our Commutative Property for Addition:

$$
A+B=B+A
$$

Does this work for Subtraction?
Let's pick two numbers and try: 5 and 3

$$
\begin{aligned}
& 5-3=2 \\
& 3-5=?
\end{aligned}
$$

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Our first property about subtraction: For any number A :

$$
A-A=0
$$

Remember our Commutative Property for Addition:

$$
A+B=B+A
$$

Does this work for Subtraction?
Let's pick two numbers and try: 5 and 3

$$
\begin{aligned}
& 5-3=2 \\
& 3-5=?
\end{aligned}
$$

That doesn't even make sense!

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Our first property about subtraction: For any number A :

$$
A-A=0
$$

Remember our Commutative Property for Addition:

$$
A+B=B+A
$$

Does this work for Subtraction?
Let's pick two numbers and try: 5 and 3

$$
\begin{aligned}
& 5-3=2 \\
& 3-5=?
\end{aligned}
$$

That doesn't even make sense!
Clearly, subtraction is not commutative.

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Our first property about subtraction: For any number A :

$$
A-A=0
$$

Remember our Commutative Property for Addition:

$$
A+B=B+A
$$

Does this work for Subtraction?
Let's pick two numbers and try: 5 and 3

$$
\begin{aligned}
& 5-3=2 \\
& 3-5=?
\end{aligned}
$$

That doesn't even make sense!
Clearly, subtraction is not commutative.
Since Addition is nicer, let's stick with addition for now!

Welcome to College Algebra
Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 4: As we keep hunting and eating, we learn that our society needs 4 antelope to eat for a week

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 4: As we keep hunting and eating, we learn that our society needs 4 antelope to eat for a week
We know that we can consistently catch 3 antelope.

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 4: As we keep hunting and eating, we learn that our society needs 4 antelope to eat for a week
We know that we can consistently catch 3 antelope.
How many does our (inconsistent) hunting partner need?

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 4: As we keep hunting and eating, we learn that our society needs 4 antelope to eat for a week
We know that we can consistently catch 3 antelope.
How many does our (inconsistent) hunting partner need?
Since we know we add our numbers together, this is addition.

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 4: As we keep hunting and eating, we learn that our society needs 4 antelope to eat for a week
We know that we can consistently catch 3 antelope.
How many does our (inconsistent) hunting partner need?
Since we know we add our numbers together, this is addition. But different... Now we have:

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 4: As we keep hunting and eating, we learn that our society needs 4 antelope to eat for a week
We know that we can consistently catch 3 antelope.
How many does our (inconsistent) hunting partner need?
Since we know we add our numbers together, this is addition. But different... Now we have:

$$
3+?=4
$$

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 4: As we keep hunting and eating, we learn that our society needs 4 antelope to eat for a week
We know that we can consistently catch 3 antelope.
How many does our (inconsistent) hunting partner need?
Since we know we add our numbers together, this is addition. But different... Now we have:

$$
3+?=4
$$

Like before, we are trying to figure out a number. But now, we want to be able to add the number that we don't know!

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 4: As we keep hunting and eating, we learn that our society needs 4 antelope to eat for a week
We know that we can consistently catch 3 antelope.
How many does our (inconsistent) hunting partner need?
Since we know we add our numbers together, this is addition. But different... Now we have:

$$
3+?=4
$$

Like before, we are trying to figure out a number. But now, we want to be able to add the number that we don't know! This is where Algebra is born!

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 4: As we keep hunting and eating, we learn that our society needs 4 antelope to eat for a week
We know that we can consistently catch 3 antelope.
How many does our (inconsistent) hunting partner need?
Since we know we add our numbers together, this is addition. But different... Now we have:

$$
3+?=4
$$

Like before, we are trying to figure out a number. But now, we want to be able to add the number that we don't know! This is where Algebra is born!
Because ? is not a very easy symbol to work with, we will call our unknown number x

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Example 4: As we keep hunting and eating, we learn that our society needs 4 antelope to eat for a week
We know that we can consistently catch 3 antelope.
How many does our (inconsistent) hunting partner need?
Since we know we add our numbers together, this is addition. But different... Now we have:

$$
3+?=4
$$

Like before, we are trying to figure out a number. But now, we want to be able to add the number that we don't know! This is where Algebra is born!
Because ? is not a very easy symbol to work with, we will call our unknown number x
We now have a name for our number x, but how to we find out what it is?!

Welcome to College Algebra

Our numbers so far:

$$
\begin{aligned}
& \{0,1,2,3, \ldots\} \\
& 3+x=4
\end{aligned}
$$

Now that we named x, what number is it?

Welcome to College Algebra

Our numbers so far:

$$
\begin{aligned}
& \{0,1,2,3, \ldots\} \\
& 3+x=4
\end{aligned}
$$

Now that we named x, what number is it?
To answer this, we can start pick numbers from our list up there, and keep adding our 3 to them...

Welcome to College Algebra

Our numbers so far:

$$
\begin{aligned}
& \{0,1,2,3, \ldots\} \\
& 3+x=4
\end{aligned}
$$

Now that we named x, what number is it?
To answer this, we can start pick numbers from our list up there, and keep adding our 3 to them...
If $x=0$, then we caught: $3+0=3$

Welcome to College Algebra

Our numbers so far:

$$
\begin{aligned}
& \{0,1,2,3, \ldots\} \\
& 3+x=4
\end{aligned}
$$

Now that we named x, what number is it?
To answer this, we can start pick numbers from our list up there, and keep adding our 3 to them...
If $x=0$, then we caught: $3+0=3$
That's not enough... Let's try something bigger.

Welcome to College Algebra

Our numbers so far:

$$
\begin{aligned}
& \quad\{0,1,2,3, \ldots\} \\
& 3+x=4
\end{aligned}
$$

Now that we named x, what number is it?
To answer this, we can start pick numbers from our list up there, and keep adding our 3 to them...
If $x=0$, then we caught: $3+0=3$
That's not enough... Let's try something bigger.
If $x=3$, then we caught: $3+3=6$

Welcome to College Algebra

Our numbers so far:

$$
\begin{aligned}
& \quad\{0,1,2,3, \ldots\} \\
& 3+x=4
\end{aligned}
$$

Now that we named x, what number is it?
To answer this, we can start pick numbers from our list up there, and keep adding our 3 to them...
If $x=0$, then we caught: $3+0=3$
That's not enough... Let's try something bigger.
If $x=3$, then we caught: $3+3=6$
That's too much... Let's try something smaller.

Welcome to College Algebra

Our numbers so far:

$$
\begin{aligned}
& \quad\{0,1,2,3, \ldots\} \\
& 3+x=4
\end{aligned}
$$

Now that we named x, what number is it?
To answer this, we can start pick numbers from our list up there, and keep adding our 3 to them...
If $x=0$, then we caught: $3+0=3$
That's not enough... Let's try something bigger.
If $x=3$, then we caught: $3+3=6$
That's too much... Let's try something smaller.
If $x=1$, then we caught: $3+1=4$

Welcome to College Algebra

Our numbers so far:

$$
\begin{aligned}
& \quad\{0,1,2,3, \ldots\} \\
& 3+x=4
\end{aligned}
$$

Now that we named x, what number is it?
To answer this, we can start pick numbers from our list up there, and keep adding our 3 to them...
If $x=0$, then we caught: $3+0=3$
That's not enough... Let's try something bigger.
If $x=3$, then we caught: $3+3=6$
That's too much... Let's try something smaller.
If $x=1$, then we caught: $3+1=4$
That's it! They need 1 antelope!

Welcome to College Algebra

Our numbers so far:

$$
\begin{aligned}
& \quad\{0,1,2,3, \ldots\} \\
& 3+x=4
\end{aligned}
$$

Now that we named x, what number is it?
To answer this, we can start pick numbers from our list up there, and keep adding our 3 to them...
If $x=0$, then we caught: $3+0=3$
That's not enough... Let's try something bigger.
If $x=3$, then we caught: $3+3=6$
That's too much... Let's try something smaller.
If $x=1$, then we caught: $3+1=4$
That's it! They need 1 antelope!
We will call this number that works our solution

Welcome to College Algebra

Our numbers so far:

$$
\begin{aligned}
& \{0,1,2,3, \ldots\} \\
& 3+x=4
\end{aligned}
$$

Now that we named x, what number is it?
To answer this, we can start pick numbers from our list up there, and keep adding our 3 to them...
If $x=0$, then we caught: $3+0=3$
That's not enough... Let's try something bigger.
If $x=3$, then we caught: $3+3=6$
That's too much... Let's try something smaller.
If $x=1$, then we caught: $3+1=4$
That's it! They need 1 antelope!
We will call this number that works our solution
Although this technique is inefficient, it works!

Welcome to College Algebra

Our numbers so far:

$$
\begin{aligned}
& \quad\{0,1,2,3, \ldots\} \\
& 3+x=4
\end{aligned}
$$

Now that we named x, what number is it?
To answer this, we can start pick numbers from our list up there, and keep adding our 3 to them...
If $x=0$, then we caught: $3+0=3$
That's not enough... Let's try something bigger.
If $x=3$, then we caught: $3+3=6$
That's too much... Let's try something smaller.
If $x=1$, then we caught: $3+1=4$
That's it! They need 1 antelope!
We will call this number that works our solution
Although this technique is inefficient, it works!
Don't worry, we will work on efficiency throughout the course!

Welcome to College Algebra

Our numbers so far:

$$
\begin{aligned}
& \{0,1,2,3, \ldots\} \\
& 3+x=4
\end{aligned}
$$

Now that we named x, what number is it?
To answer this, we can start pick numbers from our list up there, and keep adding our 3 to them...
If $x=0$, then we caught: $3+0=3$
That's not enough... Let's try something bigger.
If $x=3$, then we caught: $3+3=6$
That's too much... Let's try something smaller.
If $x=1$, then we caught: $3+1=4$
That's it! They need 1 antelope!
We will call this number that works our solution Although this technique is inefficient, it works!
Don't worry, we will work on efficiency throughout the course!
For now, we are hunter/gatherers happy that we figured it out!

Welcome to College Algebra
Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

As we gather more and hunt less, we have more time to think In our time spent not hunting, we think about this Algebra

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

As we gather more and hunt less, we have more time to think In our time spent not hunting, we think about this Algebra We saw that 0 is important to addition, so we wonder:

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

As we gather more and hunt less, we have more time to think In our time spent not hunting, we think about this Algebra We saw that 0 is important to addition, so we wonder:

$$
3+x=0
$$

What is the solution? What number for x works?

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

As we gather more and hunt less, we have more time to think In our time spent not hunting, we think about this Algebra We saw that 0 is important to addition, so we wonder:

$$
3+x=0
$$

What is the solution? What number for x works?
As before, we can try numbers from our list above and check.

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

As we gather more and hunt less, we have more time to think In our time spent not hunting, we think about this Algebra We saw that 0 is important to addition, so we wonder:

$$
3+x=0
$$

What is the solution? What number for x works?
As before, we can try numbers from our list above and check.
If $x=2$, then we caught: $3+2=5$

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

As we gather more and hunt less, we have more time to think In our time spent not hunting, we think about this Algebra We saw that 0 is important to addition, so we wonder:

$$
3+x=0
$$

What is the solution? What number for x works?
As before, we can try numbers from our list above and check.
If $x=2$, then we caught: $3+2=5$
That's too much... Let's try something smaller.

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

As we gather more and hunt less, we have more time to think In our time spent not hunting, we think about this Algebra We saw that 0 is important to addition, so we wonder:

$$
3+x=0
$$

What is the solution? What number for x works?
As before, we can try numbers from our list above and check.
If $x=2$, then we caught: $3+2=5$
That's too much... Let's try something smaller.
If $x=1$, then we caught: $3+1=4$

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

As we gather more and hunt less, we have more time to think In our time spent not hunting, we think about this Algebra We saw that 0 is important to addition, so we wonder:

$$
3+x=0
$$

What is the solution? What number for x works?
As before, we can try numbers from our list above and check.
If $x=2$, then we caught: $3+2=5$
That's too much... Let's try something smaller.
If $x=1$, then we caught: $3+1=4$
That's too much... Let's try something smaller!

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

As we gather more and hunt less, we have more time to think In our time spent not hunting, we think about this Algebra We saw that 0 is important to addition, so we wonder:

$$
3+x=0
$$

What is the solution? What number for x works?
As before, we can try numbers from our list above and check.
If $x=2$, then we caught: $3+2=5$
That's too much... Let's try something smaller.
If $x=1$, then we caught: $3+1=4$
That's too much... Let's try something smaller!
If $x=0$, then we caught: $3+0=0$

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

As we gather more and hunt less, we have more time to think In our time spent not hunting, we think about this Algebra We saw that 0 is important to addition, so we wonder:

$$
3+x=0
$$

What is the solution? What number for x works?
As before, we can try numbers from our list above and check.
If $x=2$, then we caught: $3+2=5$
That's too much... Let's try something smaller.
If $x=1$, then we caught: $3+1=4$
That's too much... Let's try something smaller!
If $x=0$, then we caught: $3+0=0$
That's too much... Let's try something smaller!!

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

As we gather more and hunt less, we have more time to think In our time spent not hunting, we think about this Algebra We saw that 0 is important to addition, so we wonder:

$$
3+x=0
$$

What is the solution? What number for x works?
As before, we can try numbers from our list above and check.
If $x=2$, then we caught: $3+2=5$
That's too much... Let's try something smaller.
If $x=1$, then we caught: $3+1=4$
That's too much... Let's try something smaller!
If $x=0$, then we caught: $3+0=0$
That's too much... Let's try something smaller!!
We don't have any number smaller! Yet...

Welcome to College Algebra

Our numbers so far:

$$
\{0,1,2,3, \ldots\}
$$

As we gather more and hunt less, we have more time to think In our time spent not hunting, we think about this Algebra We saw that 0 is important to addition, so we wonder:

$$
3+x=0
$$

What is the solution? What number for x works?
As before, we can try numbers from our list above and check.
If $x=2$, then we caught: $3+2=5$
That's too much... Let's try something smaller.
If $x=1$, then we caught: $3+1=4$
That's too much... Let's try something smaller!
If $x=0$, then we caught: $3+0=0$
That's too much... Let's try something smaller!!
We don't have any number smaller! Yet...
Just like when we starting including 0 , we need new numbers!

Welcome to College Algebra

Our numbers so far:

$$
\begin{aligned}
& \{0,1,2,3, \ldots\} \\
& 3+x=0
\end{aligned}
$$

Just like when we starting including 0 , we need new numbers!

Welcome to College Algebra

Our numbers so far:

$$
\begin{aligned}
& \{0,1,2,3, \ldots\} \\
& 3+x=0
\end{aligned}
$$

Just like when we starting including 0 , we need new numbers! None of our numbers solve our problem. So, we make one up!

Welcome to College Algebra

Our numbers so far:

$$
\begin{aligned}
& \{0,1,2,3, \ldots\} \\
& 3+x=0
\end{aligned}
$$

Just like when we starting including 0 , we need new numbers! None of our numbers solve our problem. So, we make one up! We call our new number that solves our equation: -3

Welcome to College Algebra

Our numbers so far:

$$
\begin{aligned}
& \{0,1,2,3, \ldots\} \\
& 3+x=0
\end{aligned}
$$

Just like when we starting including 0 , we need new numbers! None of our numbers solve our problem. So, we make one up!
We call our new number that solves our equation: -3
Even though we had to make it up, we have a solution:

$$
3+-3=0
$$

Welcome to College Algebra

Our numbers so far:

$$
\begin{aligned}
& \{0,1,2,3, \ldots\} \\
& 3+x=0
\end{aligned}
$$

Just like when we starting including 0 , we need new numbers! None of our numbers solve our problem. So, we make one up!
We call our new number that solves our equation: -3
Even though we had to make it up, we have a solution:

$$
3+-3=0
$$

We don't want to stop with 3 , though! Let's keep going.

Welcome to College Algebra

Our numbers so far:

$$
\begin{aligned}
& \{0,1,2,3, \ldots\} \\
& 3+x=0
\end{aligned}
$$

Just like when we starting including 0 , we need new numbers! None of our numbers solve our problem. So, we make one up!
We call our new number that solves our equation: -3
Even though we had to make it up, we have a solution:

$$
3+-3=0
$$

We don't want to stop with 3 , though! Let's keep going.

$$
1+-1=0
$$

Welcome to College Algebra

Our numbers so far:

$$
\begin{aligned}
& \{0,1,2,3, \ldots\} \\
& 3+x=0
\end{aligned}
$$

Just like when we starting including 0 , we need new numbers! None of our numbers solve our problem. So, we make one up!
We call our new number that solves our equation: -3
Even though we had to make it up, we have a solution:

$$
3+-3=0
$$

We don't want to stop with 3 , though! Let's keep going.

$$
\begin{aligned}
& 1+-1=0 \\
& 2+-2=0
\end{aligned}
$$

Welcome to College Algebra

Our numbers so far:

$$
\begin{aligned}
& \{0,1,2,3, \ldots\} \\
& 3+x=0
\end{aligned}
$$

Just like when we starting including 0 , we need new numbers! None of our numbers solve our problem. So, we make one up!
We call our new number that solves our equation: -3
Even though we had to make it up, we have a solution:

$$
3+-3=0
$$

We don't want to stop with 3 , though! Let's keep going.

$$
\begin{array}{r}
1+-1=0 \\
2+-2=0 \\
100+-100=0
\end{array}
$$

Welcome to College Algebra

Our numbers so far:

$$
\begin{aligned}
& \{0,1,2,3, \ldots\} \\
& 3+x=0
\end{aligned}
$$

Just like when we starting including 0 , we need new numbers! None of our numbers solve our problem. So, we make one up!
We call our new number that solves our equation: -3
Even though we had to make it up, we have a solution:

$$
3+-3=0
$$

We don't want to stop with 3 , though! Let's keep going.

$$
\begin{array}{r}
1+-1=0 \\
2+-2=0 \\
100+-100=0
\end{array}
$$

For every number in our list, let's do that same!

Welcome to College Algebra

Our numbers so far:

$$
\begin{aligned}
& \{0,1,2,3, \ldots\} \\
& 3+x=0
\end{aligned}
$$

Just like when we starting including 0 , we need new numbers! None of our numbers solve our problem. So, we make one up!
We call our new number that solves our equation: -3
Even though we had to make it up, we have a solution:

$$
3+-3=0
$$

We don't want to stop with 3 , though! Let's keep going.

$$
\begin{array}{r}
1+-1=0 \\
2+-2=0 \\
100+-100=0
\end{array}
$$

For every number in our list, let's do that same!
The negative of a number is the number we to add to it get 0 .

Welcome to College Algebra

Our numbers so far:

$$
\begin{aligned}
& \{0,1,2,3, \ldots\} \\
& 3+x=0
\end{aligned}
$$

Just like when we starting including 0 , we need new numbers! None of our numbers solve our problem. So, we make one up! We call our new number that solves our equation: -3
Even though we had to make it up, we have a solution:

$$
3+-3=0
$$

We don't want to stop with 3 , though! Let's keep going.

$$
\begin{array}{r}
1+-1=0 \\
2+-2=0 \\
100+-100=0
\end{array}
$$

For every number in our list, let's do that same!
The negative of a number is the number we to add to it get 0 .
Our new number set is called the Integers, and labeled \mathbf{Z} :

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

Welcome to College Algebra
Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

We invented our new numbers so that for any number A :

$$
A+-A=0
$$

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

We invented our new numbers so that for any number A :

$$
A+-A=0
$$

We first saw that -3 is the number we add to 3 to get 0

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

We invented our new numbers so that for any number A :

$$
A+-A=0
$$

We first saw that -3 is the number we add to 3 to get 0 And that -2 is the number we add to 2 to get 0

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

We invented our new numbers so that for any number A :

$$
A+-A=0
$$

We first saw that -3 is the number we add to 3 to get 0
And that -2 is the number we add to 2 to get 0
And that -100 is the number we add to 100 to get $0 \ldots$

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

We invented our new numbers so that for any number A :

$$
A+-A=0
$$

We first saw that -3 is the number we add to 3 to get 0
And that -2 is the number we add to 2 to get 0
And that -100 is the number we add to 100 to get $0 \ldots$ But what is --3 ?

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

We invented our new numbers so that for any number A :

$$
A+-A=0
$$

We first saw that -3 is the number we add to 3 to get 0
And that -2 is the number we add to 2 to get 0
And that -100 is the number we add to 100 to get $0 \ldots$
But what is --3 ?
The negative of a number is the number we to add to it get 0 .
--3 is the number we add to -3 to get 0 .

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

We invented our new numbers so that for any number A :

$$
A+-A=0
$$

We first saw that -3 is the number we add to 3 to get 0
And that -2 is the number we add to 2 to get 0
And that -100 is the number we add to 100 to get $0 \ldots$
But what is --3 ?
The negative of a number is the number we to add to it get 0 .
--3 is the number we add to -3 to get 0 .
What number do we add to -3 to get 0 ?

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

We invented our new numbers so that for any number A :

$$
A+-A=0
$$

We first saw that -3 is the number we add to 3 to get 0
And that -2 is the number we add to 2 to get 0
And that -100 is the number we add to 100 to get $0 .$. .
But what is --3 ?
The negative of a number is the number we to add to it get 0 .
--3 is the number we add to -3 to get 0 .
What number do we add to -3 to get 0 ?

$$
-3+3=0
$$

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

We invented our new numbers so that for any number A :

$$
A+-A=0
$$

We first saw that -3 is the number we add to 3 to get 0
And that -2 is the number we add to 2 to get 0
And that -100 is the number we add to 100 to get $0 .$. .
But what is --3 ?
The negative of a number is the number we to add to it get 0 .
--3 is the number we add to -3 to get 0 .
What number do we add to -3 to get 0 ?

$$
-3+3=0
$$

Since 3 is the number we add to -3 to get 0 , we have:
$--3=3$

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

We invented our new numbers so that for any number A :

$$
A+-A=0
$$

We first saw that -3 is the number we add to 3 to get 0
And that -2 is the number we add to 2 to get 0
And that -100 is the number we add to 100 to get $0 .$. .
But what is --3 ?
The negative of a number is the number we to add to it get 0 .
--3 is the number we add to -3 to get 0 .
What number do we add to -3 to get 0 ?

$$
-3+3=0
$$

Since 3 is the number we add to -3 to get 0 , we have:

$$
--3=3
$$

Again, there's nothing special about 3 here, for any number A :

$$
--A=A
$$

Welcome to College Algebra
Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

We invented our new numbers so that for any number A :

$$
A+-A=0
$$

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

We invented our new numbers so that for any number A :

$$
A+-A=0
$$

Also, remember our property of Subtraction:

$$
A-A=0
$$

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

We invented our new numbers so that for any number A :

$$
A+-A=0
$$

Also, remember our property of Subtraction:

$$
A-A=0
$$

These are nearly identical!

$$
A+-A=A-A
$$

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

We invented our new numbers so that for any number A :

$$
A+-A=0
$$

Also, remember our property of Subtraction:

$$
A-A=0
$$

These are nearly identical!

$$
A+-A=A-A
$$

And it doesn't matter if we start with A or another number B :

$$
B+-A=B-A
$$

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

We invented our new numbers so that for any number A :

$$
A+-A=0
$$

Also, remember our property of Subtraction:

$$
A-A=0
$$

These are nearly identical!

$$
A+-A=A-A
$$

And it doesn't matter if we start with A or another number B :

$$
B+-A=B-A
$$

So, we can replace subtraction, with addition of a negative!

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

We invented our new numbers so that for any number A :

$$
A+-A=0
$$

Also, remember our property of Subtraction:

$$
A-A=0
$$

These are nearly identical!

$$
A+-A=A-A
$$

And it doesn't matter if we start with A or another number B :

$$
B+-A=B-A
$$

So, we can replace subtraction, with addition of a negative!
And we can replace addition of a negative with subtraction

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

We invented our new numbers so that for any number A :

$$
A+-A=0
$$

Also, remember our property of Subtraction:

$$
A-A=0
$$

These are nearly identical!

$$
A+-A=A-A
$$

And it doesn't matter if we start with A or another number B :

$$
B+-A=B-A
$$

So, we can replace subtraction, with addition of a negative! And we can replace addition of a negative with subtraction This versatility will be useful!

Welcome to College Algebra
Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

After spending some time to think, let's get back to hunting

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

After spending some time to think, let's get back to hunting Example 4: On our next trip, we go in a group of 3. You catch your usual 3 while your partners catch 2 and 4 .

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

After spending some time to think, let's get back to hunting Example 4: On our next trip, we go in a group of 3. You catch your usual 3 while your partners catch 2 and 4. Again, we want to know how many were caught in total.

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

After spending some time to think, let's get back to hunting Example 4: On our next trip, we go in a group of 3. You catch your usual 3 while your partners catch 2 and 4. Again, we want to know how many were caught in total. We want to add these numbers

$$
3+2+4=?
$$

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

After spending some time to think, let's get back to hunting Example 4: On our next trip, we go in a group of 3. You catch your usual 3 while your partners catch 2 and 4. Again, we want to know how many were caught in total. We want to add these numbers

$$
3+2+4=?
$$

But with addition we can only add 2 at a time.

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

After spending some time to think, let's get back to hunting Example 4: On our next trip, we go in a group of 3. You catch your usual 3 while your partners catch 2 and 4. Again, we want to know how many were caught in total. We want to add these numbers

$$
3+2+4=?
$$

But with addition we can only add 2 at a time.
Which 2 do we add first?

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

After spending some time to think, let's get back to hunting Example 4: On our next trip, we go in a group of 3. You catch your usual 3 while your partners catch 2 and 4. Again, we want to know how many were caught in total. We want to add these numbers

$$
3+2+4=?
$$

But with addition we can only add 2 at a time.
Which 2 do we add first?
If we add 3 and 2 first, we get:

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

After spending some time to think, let's get back to hunting Example 4: On our next trip, we go in a group of 3. You catch your usual 3 while your partners catch 2 and 4. Again, we want to know how many were caught in total. We want to add these numbers

$$
3+2+4=?
$$

But with addition we can only add 2 at a time.
Which 2 do we add first?
If we add 3 and 2 first, we get:

$$
(3+2)+4=
$$

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

After spending some time to think, let's get back to hunting Example 4: On our next trip, we go in a group of 3. You catch your usual 3 while your partners catch 2 and 4. Again, we want to know how many were caught in total. We want to add these numbers

$$
3+2+4=?
$$

But with addition we can only add 2 at a time.
Which 2 do we add first?
If we add 3 and 2 first, we get:

$$
(3+2)+4=(5)+4
$$

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

After spending some time to think, let's get back to hunting Example 4: On our next trip, we go in a group of 3. You catch your usual 3 while your partners catch 2 and 4. Again, we want to know how many were caught in total. We want to add these numbers

$$
3+2+4=?
$$

But with addition we can only add 2 at a time.
Which 2 do we add first?
If we add 3 and 2 first, we get:

$$
(3+2)+4=(5)+4=9
$$

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

After spending some time to think, let's get back to hunting Example 4: On our next trip, we go in a group of 3. You catch your usual 3 while your partners catch 2 and 4. Again, we want to know how many were caught in total. We want to add these numbers

$$
3+2+4=?
$$

But with addition we can only add 2 at a time.
Which 2 do we add first?
If we add 3 and 2 first, we get:

$$
(3+2)+4=(5)+4=9
$$

What if we add the 2 and 4 first?

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

After spending some time to think, let's get back to hunting Example 4: On our next trip, we go in a group of 3. You catch your usual 3 while your partners catch 2 and 4.
Again, we want to know how many were caught in total.
We want to add these numbers

$$
3+2+4=?
$$

But with addition we can only add 2 at a time.
Which 2 do we add first?
If we add 3 and 2 first, we get:

$$
(3+2)+4=(5)+4=9
$$

What if we add the 2 and 4 first?

$$
3+(2+4)=
$$

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

After spending some time to think, let's get back to hunting Example 4: On our next trip, we go in a group of 3. You catch your usual 3 while your partners catch 2 and 4.
Again, we want to know how many were caught in total.
We want to add these numbers

$$
3+2+4=?
$$

But with addition we can only add 2 at a time.
Which 2 do we add first?
If we add 3 and 2 first, we get:

$$
(3+2)+4=(5)+4=9
$$

What if we add the 2 and 4 first?

$$
3+(2+4)=3+(6)
$$

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

After spending some time to think, let's get back to hunting Example 4: On our next trip, we go in a group of 3. You catch your usual 3 while your partners catch 2 and 4.
Again, we want to know how many were caught in total.
We want to add these numbers

$$
3+2+4=?
$$

But with addition we can only add 2 at a time.
Which 2 do we add first?
If we add 3 and 2 first, we get:

$$
(3+2)+4=(5)+4=9
$$

What if we add the 2 and 4 first?

$$
3+(2+4)=3+(6)=9
$$

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

After spending some time to think, let's get back to hunting Example 4: On our next trip, we go in a group of 3. You catch your usual 3 while your partners catch 2 and 4.
Again, we want to know how many were caught in total.
We want to add these numbers

$$
3+2+4=?
$$

But with addition we can only add 2 at a time.
Which 2 do we add first?
If we add 3 and 2 first, we get:

$$
(3+2)+4=(5)+4=9
$$

What if we add the 2 and 4 first?

$$
3+(2+4)=3+(6)=9
$$

It doesn't matter what order we add the three numbers!

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

After spending some time to think, let's get back to hunting Example 4: On our next trip, we go in a group of 3. You catch your usual 3 while your partners catch 2 and 4.
Again, we want to know how many were caught in total.
We want to add these numbers

$$
3+2+4=?
$$

But with addition we can only add 2 at a time.
Which 2 do we add first?
If we add 3 and 2 first, we get:

$$
(3+2)+4=(5)+4=9
$$

What if we add the 2 and 4 first?

$$
3+(2+4)=3+(6)=9
$$

It doesn't matter what order we add the three numbers!
Associate Property of Addition: For A, B, and C

$$
(A+B)+C=A+(B+C)
$$

Welcome to College Algebra
Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

Example 5: In the next hunting trip, you catch 3 and your partners catch 3 and 3

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

Example 5: In the next hunting trip, you catch 3 and your partners catch 3 and 3
So, in total you caught:

$$
3+3+3=
$$

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

Example 5: In the next hunting trip, you catch 3 and your partners catch 3 and 3
So, in total you caught:

$$
\underbrace{3+3}_{6}+3=
$$

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

Example 5: In the next hunting trip, you catch 3 and your partners catch 3 and 3
So, in total you caught:

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

Example 5: In the next hunting trip, you catch 3 and your partners catch 3 and 3
So, in total you caught:

As our society expands, we need more food, so we need 4 hunters, who each catch 3 , for a total of:

$$
3+3+3+3=
$$

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

Example 5: In the next hunting trip, you catch 3 and your partners catch 3 and 3
So, in total you caught:

As our society expands, we need more food, so we need 4 hunters, who each catch 3 , for a total of:

$$
\underbrace{3+3}_{6}+3+3=
$$

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

Example 5: In the next hunting trip, you catch 3 and your partners catch 3 and 3
So, in total you caught:

As our society expands, we need more food, so we need 4 hunters, who each catch 3 , for a total of:

Welcome to College Algebra

Our numbers so far:

$$
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

Example 5: In the next hunting trip, you catch 3 and your partners catch 3 and 3
So, in total you caught:

As our society expands, we need more food, so we need 4 hunters, who each catch 3 , for a total of:

Welcome to College Algebra
Our numbers so far:

$$
\begin{gathered}
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \\
3+3+3=9 \\
3+3+3+3=12
\end{gathered}
$$

Welcome to College Algebra

Our numbers so far:

$$
\begin{gathered}
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \\
3+3+3=9 \\
3+3+3+3=12
\end{gathered}
$$

Continuing this, what if we have 5 hunters who each catch 3 ?

Welcome to College Algebra

Our numbers so far:

$$
\begin{gathered}
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \\
3+3+3=9 \\
3+3+3+3=12
\end{gathered}
$$

Continuing this, what if we have 5 hunters who each catch 3 ?

$$
3+3+3+3+3=
$$

Welcome to College Algebra

Our numbers so far:

$$
\begin{gathered}
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \\
3+3+3=9 \\
3+3+3+3=12
\end{gathered}
$$

Continuing this, what if we have 5 hunters who each catch 3 ?

$$
\underbrace{3+3}_{6}+3+3+3=
$$

Welcome to College Algebra

Our numbers so far:

$$
\begin{gathered}
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \\
3+3+3=9 \\
3+3+3+3=12
\end{gathered}
$$

Continuing this, what if we have 5 hunters who each catch 3 ?

$$
\underbrace{\underbrace{3+3}_{6}}_{9}+3+3+3=
$$

Welcome to College Algebra

Our numbers so far:

$$
\begin{gathered}
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \\
3+3+3=9 \\
3+3+3+3=12
\end{gathered}
$$

Continuing this, what if we have 5 hunters who each catch 3 ?

Welcome to College Algebra

Our numbers so far:

$$
\begin{gathered}
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \\
3+3+3=9 \\
3+3+3+3=12
\end{gathered}
$$

Continuing this, what if we have 5 hunters who each catch 3 ?

Welcome to College Algebra

Our numbers so far:

$$
\begin{gathered}
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \\
3+3+3=9 \\
3+3+3+3=12
\end{gathered}
$$

Continuing this, what if we have 5 hunters who each catch 3 ?

Now, what if we have 10 hunters who each catch 3 antelope?

Welcome to College Algebra

Our numbers so far:

$$
\begin{gathered}
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \\
3+3+3=9 \\
3+3+3+3=12
\end{gathered}
$$

Continuing this, what if we have 5 hunters who each catch 3 ?

Now, what if we have 10 hunters who each catch 3 antelope?
$3+3+3+3+3+3+3+3+3+3=$

Welcome to College Algebra

Our numbers so far:

$$
\begin{gathered}
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \\
3+3+3=9 \\
3+3+3+3=12
\end{gathered}
$$

Continuing this, what if we have 5 hunters who each catch 3 ?

Now, what if we have 10 hunters who each catch 3 antelope?
$3+3+3+3+3+3+3+3+3+3=$
This Addition problem isn't difficult, but it's tedious.

Welcome to College Algebra

Our numbers so far:

$$
\begin{gathered}
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \\
3+3+3=9 \\
3+3+3+3=12
\end{gathered}
$$

Continuing this, what if we have 5 hunters who each catch 3 ?

Now, what if we have 10 hunters who each catch 3 antelope?
$3+3+3+3+3+3+3+3+3+3=$
This Addition problem isn't difficult, but it's tedious.
We need something more efficient

Welcome to College Algebra

Our numbers so far:

$$
\begin{gathered}
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \\
3+3+3=9 \\
3+3+3+3=12
\end{gathered}
$$

Continuing this, what if we have 5 hunters who each catch 3 ?

Now, what if we have 10 hunters who each catch 3 antelope?
$3+3+3+3+3+3+3+3+3+3=$
This Addition problem isn't difficult, but it's tedious.
We need something more efficient: Multiplication

Welcome to College Algebra

Our numbers so far:

$$
\begin{gathered}
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \\
3+3+3=9 \\
3+3+3+3=12
\end{gathered}
$$

Continuing this, what if we have 5 hunters who each catch 3 ?

Now, what if we have 10 hunters who each catch 3 antelope?
$3+3+3+3+3+3+3+3+3+3=$
This Addition problem isn't difficult, but it's tedious.
We need something more efficient: Multiplication
Multiplication $A \cdot B$ means to add A to itself B times.

Welcome to College Algebra

Our numbers so far:

$$
\begin{gathered}
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \\
3+3+3=9 \\
3+3+3+3=12
\end{gathered}
$$

Continuing this, what if we have 5 hunters who each catch 3 ?

Now, what if we have 10 hunters who each catch 3 antelope?
$3+3+3+3+3+3+3+3+3+3=$
This Addition problem isn't difficult, but it's tedious.
We need something more efficient: Multiplication
Multiplication $A \cdot B$ means to add A to itself B times.
Our problem becomes:

Welcome to College Algebra

Our numbers so far:

$$
\begin{gathered}
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \\
3+3+3=9 \\
3+3+3+3=12
\end{gathered}
$$

Continuing this, what if we have 5 hunters who each catch 3 ?

Now, what if we have 10 hunters who each catch 3 antelope?
$3+3+3+3+3+3+3+3+3+3=$
This Addition problem isn't difficult, but it's tedious.
We need something more efficient: Multiplication
Multiplication $A \cdot B$ means to add A to itself B times.
Our problem becomes:
$3+3+3+3+3+3+3+3+3+3=$

Welcome to College Algebra

Our numbers so far:

$$
\begin{gathered}
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \\
3+3+3=9 \\
3+3+3+3=12
\end{gathered}
$$

Continuing this, what if we have 5 hunters who each catch 3 ?

Now, what if we have 10 hunters who each catch 3 antelope?
$3+3+3+3+3+3+3+3+3+3=$
This Addition problem isn't difficult, but it's tedious.
We need something more efficient: Multiplication
Multiplication $A \cdot B$ means to add A to itself B times.
Our problem becomes:
$3+3+3+3+3+3+3+3+3+3=3 \cdot 10$

Welcome to College Algebra

Our numbers so far:

$$
\begin{gathered}
\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \\
3+3+3=9 \\
3+3+3+3=12
\end{gathered}
$$

Continuing this, what if we have 5 hunters who each catch 3 ?

Now, what if we have 10 hunters who each catch 3 antelope?
$3+3+3+3+3+3+3+3+3+3=$
This Addition problem isn't difficult, but it's tedious.
We need something more efficient: Multiplication
Multiplication $A \cdot B$ means to add A to itself B times.
Our problem becomes:
$3+3+3+3+3+3+3+3+3+3=3 \cdot 10=30$

Welcome to College Algebra

Welcome to College Algebra

We can visualize multiplication in terms of blocks

Welcome to College Algebra

We can visualize multiplication in terms of blocks Example: 4-3

Welcome to College Algebra

We can visualize multiplication in terms of blocks
Example: 4-3
By definition: $4 \cdot 3=\underbrace{4+4+4}_{3 \text { times }}=12$

Welcome to College Algebra

We can visualize multiplication in terms of blocks
Example: 4-3
By definition: $4 \cdot 3=\underbrace{4+4+4}_{3 \text { times }}=12$

Welcome to College Algebra

We can visualize multiplication in terms of blocks
Example: 4-3
By definition: $4 \cdot 3=\underbrace{4+4+4}_{3 \text { times }}=12$
So we can visualize multiplication of 4.3 as a rectangle of width 4 and height 3

Welcome to College Algebra

We can visualize multiplication in terms of blocks
Example: 4 - 3
By definition: $4 \cdot 3=\underbrace{4+4+4}_{3 \text { times }}=12$
So we can visualize multiplication of 4.3 as a rectangle of width 4 and height 3

Note: This helps us see that if we compute 3.4 we get the same rectangle (but on its side)

Welcome to College Algebra

We can visualize multiplication in terms of blocks
Example: 4 - 3
By definition: $4 \cdot 3=\underbrace{4+4+4}_{3 \text { times }}=12$
So we can visualize multiplication of 4.3 as a rectangle of width 4 and height 3

Note: This helps us see that if we compute 3.4 we get the same rectangle (but on its side)
So we see: $4 \cdot 3=3 \cdot 4$

Welcome to College Algebra

We can visualize multiplication in terms of blocks
Example: 4 - 3
By definition: $4 \cdot 3=\underbrace{4+4+4}_{3 \text { times }}=12$
So we can visualize multiplication of 4.3 as a rectangle of width 4 and height 3

Note: This helps us see that if we compute 3.4 we get the same rectangle (but on its side)
So we see: $4 \cdot 3=3 \cdot 4$
Commutative Property of Multiplication: For any A, B

$$
A \cdot B=B \cdot A
$$

Welcome to College Algebra

Welcome to College Algebra

We saw both Addition and Multiplication are Commutative:

Welcome to College Algebra

We saw both Addition and Multiplication are Commutative:

$$
A+B=B+A \quad A \cdot B=B \cdot A
$$

Welcome to College Algebra

We saw both Addition and Multiplication are Commutative:

$$
A+B=B+A \quad A \cdot B=B \cdot A
$$

Similar to Addition; Multiplication is also Associative.

Welcome to College Algebra

We saw both Addition and Multiplication are Commutative:

$$
A+B=B+A \quad A \cdot B=B \cdot A
$$

Similar to Addition; Multiplication is also Associative.
For A, B, and C

$$
(A \cdot B) \cdot C=A \cdot(B \cdot C)
$$

Welcome to College Algebra

We saw both Addition and Multiplication are Commutative:

$$
A+B=B+A \quad A \cdot B=B \cdot A
$$

Similar to Addition; Multiplication is also Associative.
For A, B, and C

$$
(A \cdot B) \cdot C=A \cdot(B \cdot C)
$$

So, if we are only multiplying, we can multiply in any order

Welcome to College Algebra

We saw both Addition and Multiplication are Commutative:

$$
A+B=B+A \quad A \cdot B=B \cdot A
$$

Similar to Addition; Multiplication is also Associative.
For A, B, and C

$$
(A \cdot B) \cdot C=A \cdot(B \cdot C)
$$

So, if we are only multiplying, we can multiply in any order
Example: $2 \cdot x \cdot 5$

Welcome to College Algebra

We saw both Addition and Multiplication are Commutative:

$$
A+B=B+A \quad A \cdot B=B \cdot A
$$

Similar to Addition; Multiplication is also Associative.
For A, B, and C

$$
(A \cdot B) \cdot C=A \cdot(B \cdot C)
$$

So, if we are only multiplying, we can multiply in any order
Example: $2 \cdot x \cdot 5=2 \cdot 5 \cdot x$

Welcome to College Algebra

We saw both Addition and Multiplication are Commutative:

$$
A+B=B+A \quad A \cdot B=B \cdot A
$$

Similar to Addition; Multiplication is also Associative.
For A, B, and C

$$
(A \cdot B) \cdot C=A \cdot(B \cdot C)
$$

So, if we are only multiplying, we can multiply in any order
Example: $2 \cdot x \cdot 5=2 \cdot 5 \cdot x=10 \cdot x$

Welcome to College Algebra

We saw both Addition and Multiplication are Commutative:

$$
A+B=B+A \quad A \cdot B=B \cdot A
$$

Similar to Addition; Multiplication is also Associative.
For A, B, and C

$$
(A \cdot B) \cdot C=A \cdot(B \cdot C)
$$

So, if we are only multiplying, we can multiply in any order
Example: $2 \cdot x \cdot 5=2 \cdot 5 \cdot x=10 \cdot x$
Note: Moving forward, we will may not show these steps, but they will be working in the background.

Welcome to College Algebra

We saw both Addition and Multiplication are Commutative:

$$
A+B=B+A \quad A \cdot B=B \cdot A
$$

Similar to Addition; Multiplication is also Associative.
For A, B, and C

$$
(A \cdot B) \cdot C=A \cdot(B \cdot C)
$$

So, if we are only multiplying, we can multiply in any order
Example: $2 \cdot x \cdot 5=2 \cdot 5 \cdot x=10 \cdot x$
Note: Moving forward, we will may not show these steps, but they will be working in the background.
We saw one more aspect of Addition, which is the identity 0

Welcome to College Algebra

We saw both Addition and Multiplication are Commutative:

$$
A+B=B+A \quad A \cdot B=B \cdot A
$$

Similar to Addition; Multiplication is also Associative.
For A, B, and C

$$
(A \cdot B) \cdot C=A \cdot(B \cdot C)
$$

So, if we are only multiplying, we can multiply in any order
Example: $2 \cdot x \cdot 5=2 \cdot 5 \cdot x=10 \cdot x$
Note: Moving forward, we will may not show these steps, but they will be working in the background.
We saw one more aspect of Addition, which is the identity 0
$\mathbf{0}$ is the Additive Identity: For any number A

$$
A+0=A=0+A
$$

Welcome to College Algebra

We saw both Addition and Multiplication are Commutative:

$$
A+B=B+A \quad A \cdot B=B \cdot A
$$

Similar to Addition; Multiplication is also Associative.
For A, B, and C

$$
(A \cdot B) \cdot C=A \cdot(B \cdot C)
$$

So, if we are only multiplying, we can multiply in any order
Example: $2 \cdot x \cdot 5=2 \cdot 5 \cdot x=10 \cdot x$
Note: Moving forward, we will may not show these steps, but they will be working in the background.
We saw one more aspect of Addition, which is the identity 0
$\mathbf{0}$ is the Additive Identity: For any number A

$$
A+0=A=0+A
$$

$\mathbf{1}$ is the Multiplicative Identity: For any number A

Welcome to College Algebra

We saw both Addition and Multiplication are Commutative:

$$
A+B=B+A \quad A \cdot B=B \cdot A
$$

Similar to Addition; Multiplication is also Associative.
For A, B, and C

$$
(A \cdot B) \cdot C=A \cdot(B \cdot C)
$$

So, if we are only multiplying, we can multiply in any order
Example: $2 \cdot x \cdot 5=2 \cdot 5 \cdot x=10 \cdot x$
Note: Moving forward, we will may not show these steps, but they will be working in the background.
We saw one more aspect of Addition, which is the identity 0
$\mathbf{0}$ is the Additive Identity: For any number A

$$
A+0=A=0+A
$$

$\mathbf{1}$ is the Multiplicative Identity: For any number A

$$
A \cdot 1=A=1 \cdot A
$$

Welcome to College Algebra

Welcome to College Algebra

Let's continue this pattern of understanding Multiplication as we did Addition

Welcome to College Algebra

Let's continue this pattern of understanding Multiplication as we did Addition

We saw that Addition gave rise an opposite operation:
Subtraction

Welcome to College Algebra

Let's continue this pattern of understanding Multiplication as we did Addition
We saw that Addition gave rise an opposite operation:
Subtraction
Example to see why Subtraction is the opposite of Addition:
If we start with 3 then Add 4 then Subtract 4 we get:

Welcome to College Algebra

Let's continue this pattern of understanding Multiplication as we did Addition
We saw that Addition gave rise an opposite operation:
Subtraction
Example to see why Subtraction is the opposite of Addition:
If we start with 3 then Add 4 then Subtract 4 we get:

$$
3+4-4=3
$$

Welcome to College Algebra

Let's continue this pattern of understanding Multiplication as we did Addition
We saw that Addition gave rise an opposite operation:
Subtraction
Example to see why Subtraction is the opposite of Addition:
If we start with 3 then Add 4 then Subtract 4 we get:

$$
3+4-4=3
$$

In general, if we start with any number x then Add y then Subtract y we get:

Welcome to College Algebra

Let's continue this pattern of understanding Multiplication as we did Addition
We saw that Addition gave rise an opposite operation:
Subtraction
Example to see why Subtraction is the opposite of Addition:
If we start with 3 then Add 4 then Subtract 4 we get:

$$
3+4-4=3
$$

In general, if we start with any number x then Add y then Subtract y we get:

$$
x+y-y=x
$$

Welcome to College Algebra

Let's continue this pattern of understanding Multiplication as we did Addition
We saw that Addition gave rise an opposite operation:
Subtraction
Example to see why Subtraction is the opposite of Addition:
If we start with 3 then Add 4 then Subtract 4 we get:

$$
3+4-4=3
$$

In general, if we start with any number x then Add y then Subtract y we get:

$$
x+y-y=x
$$

Similarly, Multiplication has an opposite operation: Division

Welcome to College Algebra

Let's continue this pattern of understanding Multiplication as we did Addition
We saw that Addition gave rise an opposite operation:

Subtraction

Example to see why Subtraction is the opposite of Addition:
If we start with 3 then Add 4 then Subtract 4 we get:

$$
3+4-4=3
$$

In general, if we start with any number x then Add y then Subtract y we get:

$$
x+y-y=x
$$

Similarly, Multiplication has an opposite operation: Division For any number x, if we Multiply by y then Divide by y we get:

Welcome to College Algebra

Let's continue this pattern of understanding Multiplication as we did Addition
We saw that Addition gave rise an opposite operation:

Subtraction

Example to see why Subtraction is the opposite of Addition:
If we start with 3 then Add 4 then Subtract 4 we get:

$$
3+4-4=3
$$

In general, if we start with any number x then Add y then Subtract y we get:

$$
x+y-y=x
$$

Similarly, Multiplication has an opposite operation: Division For any number x, if we Multiply by y then Divide by y we get:

$$
x \cdot y \div y=x
$$

Welcome to College Algebra

Welcome to College Algebra

Also similar to Addition, we may want to know if there are any numbers we can multiply 2 by to get the identity, 1

Welcome to College Algebra

Also similar to Addition, we may want to know if there are any numbers we can multiply 2 by to get the identity, 1 In other words, can we solve: $2 x=1$

Welcome to College Algebra

Also similar to Addition, we may want to know if there are any numbers we can multiply 2 by to get the identity, 1 In other words, can we solve: $2 x=1$
We need a number, so 2 of it gives a total of 1

Welcome to College Algebra

Also similar to Addition, we may want to know if there are any numbers we can multiply 2 by to get the identity, 1 In other words, can we solve: $2 x=1$
We need a number, so 2 of it gives a total of 1
We run into the same problem we had before negative numbers, we can't solve this equation with any of the numbers we have so far.

Welcome to College Algebra

Also similar to Addition, we may want to know if there are any numbers we can multiply 2 by to get the identity, 1 In other words, can we solve: $2 x=1$
We need a number, so 2 of it gives a total of 1
We run into the same problem we had before negative numbers, we can't solve this equation with any of the numbers we have so far.
So, again, we need new numbers!

Welcome to College Algebra

Also similar to Addition, we may want to know if there are any numbers we can multiply 2 by to get the identity, 1 In other words, can we solve: $2 x=1$
We need a number, so 2 of it gives a total of 1
We run into the same problem we had before negative numbers, we can't solve this equation with any of the numbers we have so far.
So, again, we need new numbers!
The number we need, we call $\frac{1}{2}$

Welcome to College Algebra

Also similar to Addition, we may want to know if there are any numbers we can multiply 2 by to get the identity, 1 In other words, can we solve: $2 x=1$
We need a number, so 2 of it gives a total of 1
We run into the same problem we had before negative numbers, we can't solve this equation with any of the numbers we have so far.
So, again, we need new numbers!
The number we need, we call $\frac{1}{2}$
$\frac{1}{2}$ is the number so that: $2 \cdot \frac{1}{2}=1$

Welcome to College Algebra

Also similar to Addition, we may want to know if there are any numbers we can multiply 2 by to get the identity, 1 In other words, can we solve: $2 x=1$
We need a number, so 2 of it gives a total of 1
We run into the same problem we had before negative numbers, we can't solve this equation with any of the numbers we have so far.
So, again, we need new numbers!
The number we need, we call $\frac{1}{2}$
$\frac{1}{2}$ is the number so that: $2 \cdot \frac{1}{2}=1$
Similarly, $\frac{1}{3}$ is the number so that: $3 \cdot \frac{1}{3}=1$

Welcome to College Algebra

Also similar to Addition, we may want to know if there are any numbers we can multiply 2 by to get the identity, 1 In other words, can we solve: $2 x=1$
We need a number, so 2 of it gives a total of 1
We run into the same problem we had before negative numbers, we can't solve this equation with any of the numbers we have so far.
So, again, we need new numbers!
The number we need, we call $\frac{1}{2}$
$\frac{1}{2}$ is the number so that: $2 \cdot \frac{1}{2}=1$
Similarly, $\frac{1}{3}$ is the number so that: $3 \cdot \frac{1}{3}=1$
In general, $\frac{1}{n}$ is the number so that: $n \cdot \frac{1}{n}=1$

Welcome to College Algebra

Welcome to College Algebra

Now that we have numbers like $\frac{1}{2}$ and $\frac{1}{3}$ we can look at how to combine them with addition and multiplication (as well as subtraction and division)

Welcome to College Algebra

Now that we have numbers like $\frac{1}{2}$ and $\frac{1}{3}$ we can look at how to combine them with addition and multiplication (as well as subtraction and division)
For now, we will focus on addition

Welcome to College Algebra

Now that we have numbers like $\frac{1}{2}$ and $\frac{1}{3}$ we can look at how to combine them with addition and multiplication (as well as subtraction and division)
For now, we will focus on addition
Example: How do we combine $\frac{1}{3}+\frac{1}{3}$?

Welcome to College Algebra

Now that we have numbers like $\frac{1}{2}$ and $\frac{1}{3}$ we can look at how to combine them with addition and multiplication (as well as subtraction and division)
For now, we will focus on addition
Example: How do we combine $\frac{1}{3}+\frac{1}{3}$?
Looking at it from a language point of view:
If we have 1 dog plus 1 dog, we have 2 dogs

Welcome to College Algebra

Now that we have numbers like $\frac{1}{2}$ and $\frac{1}{3}$ we can look at how to combine them with addition and multiplication (as well as subtraction and division)
For now, we will focus on addition
Example: How do we combine $\frac{1}{3}+\frac{1}{3}$?
Looking at it from a language point of view:
If we have 1 dog plus 1 dog, we have 2 dogs
If we have 1 pen plus 1 pen, we have 2 pens

Welcome to College Algebra

Now that we have numbers like $\frac{1}{2}$ and $\frac{1}{3}$ we can look at how to combine them with addition and multiplication (as well as subtraction and division)
For now, we will focus on addition
Example: How do we combine $\frac{1}{3}+\frac{1}{3}$?
Looking at it from a language point of view:
If we have 1 dog plus 1 dog, we have 2 dogs
If we have 1 pen plus 1 pen, we have 2 pens
So, if we have 1 third plus 1 third, we have 2 thirds

Welcome to College Algebra

Now that we have numbers like $\frac{1}{2}$ and $\frac{1}{3}$ we can look at how to combine them with addition and multiplication (as well as subtraction and division)
For now, we will focus on addition
Example: How do we combine $\frac{1}{3}+\frac{1}{3}$?
Looking at it from a language point of view:
If we have 1 dog plus 1 dog, we have 2 dogs
If we have 1 pen plus 1 pen, we have 2 pens
So, if we have 1 third plus 1 third, we have 2 thirds
We write the number 2 thirds as: $\frac{2}{3}$

Welcome to College Algebra

Now that we have numbers like $\frac{1}{2}$ and $\frac{1}{3}$ we can look at how to combine them with addition and multiplication (as well as subtraction and division)
For now, we will focus on addition
Example: How do we combine $\frac{1}{3}+\frac{1}{3}$?
Looking at it from a language point of view:
If we have 1 dog plus 1 dog, we have 2 dogs
If we have 1 pen plus 1 pen, we have 2 pens
So, if we have 1 third plus 1 third, we have 2 thirds
We write the number 2 thirds as: $\frac{2}{3}$
Doing this, we get a whole new group numbers of the form $\frac{m}{n}$

Welcome to College Algebra

Now that we have numbers like $\frac{1}{2}$ and $\frac{1}{3}$ we can look at how to combine them with addition and multiplication (as well as subtraction and division)
For now, we will focus on addition
Example: How do we combine $\frac{1}{3}+\frac{1}{3}$?
Looking at it from a language point of view:
If we have 1 dog plus 1 dog, we have 2 dogs
If we have 1 pen plus 1 pen, we have 2 pens
So, if we have 1 third plus 1 third, we have 2 thirds
We write the number 2 thirds as: $\frac{2}{3}$
Doing this, we get a whole new group numbers of the form $\frac{m}{n}$
We call these the Rational numbers, and represent them as \mathbf{Q}

Welcome to College Algebra

Now that we have numbers like $\frac{1}{2}$ and $\frac{1}{3}$ we can look at how to combine them with addition and multiplication (as well as subtraction and division)
For now, we will focus on addition
Example: How do we combine $\frac{1}{3}+\frac{1}{3}$?
Looking at it from a language point of view:
If we have 1 dog plus 1 dog, we have 2 dogs
If we have 1 pen plus 1 pen, we have 2 pens
So, if we have 1 third plus 1 third, we have 2 thirds
We write the number 2 thirds as: $\frac{2}{3}$
Doing this, we get a whole new group numbers of the form $\frac{m}{n}$ We call these the Rational numbers, and represent them as \mathbf{Q}

$$
\mathbf{Q}=\left\{\frac{m}{n} \text { so that } m \text { and } n \text { are integers and } n \neq 0\right\}
$$

Welcome to College Algebra

Welcome to College Algebra

While there are a lot of rational numbers (infinitely many), there are still some numbers that are not fractions.

Welcome to College Algebra

While there are a lot of rational numbers (infinitely many), there are still some numbers that are not fractions.
Famous examples include π and $\sqrt{2}$

Welcome to College Algebra

While there are a lot of rational numbers (infinitely many), there are still some numbers that are not fractions.
Famous examples include π and $\sqrt{2}$
In fact, between any two fractions, no matter how close together they are, there is a number which is not a fraction.

Welcome to College Algebra

While there are a lot of rational numbers (infinitely many), there are still some numbers that are not fractions.
Famous examples include π and $\sqrt{2}$
In fact, between any two fractions, no matter how close together they are, there is a number which is not a fraction.
We call this set of all numbers between any two fractions the Real numbers, which we will sometimes shorten to \mathbf{R}

Welcome to College Algebra

While there are a lot of rational numbers (infinitely many), there are still some numbers that are not fractions.
Famous examples include π and $\sqrt{2}$
In fact, between any two fractions, no matter how close together they are, there is a number which is not a fraction.
We call this set of all numbers between any two fractions the Real numbers, which we will sometimes shorten to \mathbf{R}
Because there are no gaps between Real numbers (just more Real numbers) we represent the Real numbers with a continuous line.

Welcome to College Algebra

While there are a lot of rational numbers (infinitely many), there are still some numbers that are not fractions.
Famous examples include π and $\sqrt{2}$
In fact, between any two fractions, no matter how close together they are, there is a number which is not a fraction.
We call this set of all numbers between any two fractions the Real numbers, which we will sometimes shorten to \mathbf{R}
Because there are no gaps between Real numbers (just more Real numbers) we represent the Real numbers with a continuous line.

Welcome to College Algebra

While there are a lot of rational numbers (infinitely many), there are still some numbers that are not fractions.
Famous examples include π and $\sqrt{2}$
In fact, between any two fractions, no matter how close together they are, there is a number which is not a fraction.
We call this set of all numbers between any two fractions the Real numbers, which we will sometimes shorten to \mathbf{R}
Because there are no gaps between Real numbers (just more Real numbers) we represent the Real numbers with a continuous line.

$$
\begin{array}{llllllllll}
-2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
$$

We will refer to this as the Real number line

Welcome to College Algebra

While there are a lot of rational numbers (infinitely many), there are still some numbers that are not fractions.
Famous examples include π and $\sqrt{2}$
In fact, between any two fractions, no matter how close together they are, there is a number which is not a fraction.
We call this set of all numbers between any two fractions the Real numbers, which we will sometimes shorten to \mathbf{R}
Because there are no gaps between Real numbers (just more Real numbers) we represent the Real numbers with a continuous line.

We will refer to this as the Real number line This will be our biggest set of numbers for now

Welcome to College Algebra

While there are a lot of rational numbers (infinitely many), there are still some numbers that are not fractions.
Famous examples include π and $\sqrt{2}$
In fact, between any two fractions, no matter how close together they are, there is a number which is not a fraction.
We call this set of all numbers between any two fractions the Real numbers, which we will sometimes shorten to \mathbf{R}
Because there are no gaps between Real numbers (just more Real numbers) we represent the Real numbers with a continuous line.

We will refer to this as the Real number line This will be our biggest set of numbers for now
But later in the semester we will add to it 1 more time!

Welcome to College Algebra

Welcome to College Algebra

We have seen some of the classical number sets:

Welcome to College Algebra

We have seen some of the classical number sets:
$\mathbf{N}=\{1,2,3, \ldots\}$

Welcome to College Algebra

We have seen some of the classical number sets:

$$
\begin{aligned}
& \mathbf{N}=\{1,2,3, \ldots\} \\
& \mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
\end{aligned}
$$

Welcome to College Algebra

We have seen some of the classical number sets:
$\mathbf{N}=\{1,2,3, \ldots\}$
$\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
$\mathbf{Q}=\left\{\frac{m}{n}\right.$ so that m and n are integers and $\left.n \neq 0\right\}$

Welcome to College Algebra

We have seen some of the classical number sets:
$\mathbf{N}=\{1,2,3, \ldots\}$
$\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
$\mathbf{Q}=\left\{\frac{m}{n}\right.$ so that m and n are integers and $\left.n \neq 0\right\}$
The Real numbers, \mathbf{R}

Welcome to College Algebra

We have seen some of the classical number sets:
$\mathbf{N}=\{1,2,3, \ldots\}$
$\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
$\mathbf{Q}=\left\{\frac{m}{n}\right.$ so that m and n are integers and $\left.n \neq 0\right\}$
The Real numbers, \mathbf{R}

There are other sets, such as:

Welcome to College Algebra

We have seen some of the classical number sets:
$\mathbf{N}=\{1,2,3, \ldots\}$
$\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
$\mathbf{Q}=\left\{\frac{m}{n}\right.$ so that m and n are integers and $\left.n \neq 0\right\}$
The Real numbers, \mathbf{R}

There are other sets, such as:
The even numbers $=\{2 n$ so that n is an integer $\}$

Welcome to College Algebra

We have seen some of the classical number sets:
$\mathbf{N}=\{1,2,3, \ldots\}$
$\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
$\mathbf{Q}=\left\{\frac{m}{n}\right.$ so that m and n are integers and $\left.n \neq 0\right\}$
The Real numbers, \mathbf{R}

There are other sets, such as:
The even numbers $=\{2 n$ so that n is an integer $\}$
In general, a set is any collection of numbers.

Welcome to College Algebra

We have seen some of the classical number sets:
$\mathbf{N}=\{1,2,3, \ldots\}$
$\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
$\mathbf{Q}=\left\{\frac{m}{n}\right.$ so that m and n are integers and $\left.n \neq 0\right\}$
The Real numbers, \mathbf{R}

There are other sets, such as:
The even numbers $=\{2 n$ so that n is an integer $\}$
In general, a set is any collection of numbers.
Example 1: $\{-1,3,4\}$

Welcome to College Algebra

We have seen some of the classical number sets:
$\mathbf{N}=\{1,2,3, \ldots\}$
$\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
$\mathbf{Q}=\left\{\frac{m}{n}\right.$ so that m and n are integers and $\left.n \neq 0\right\}$
The Real numbers, \mathbf{R}

There are other sets, such as:
The even numbers $=\{2 n$ so that n is an integer $\}$
In general, a set is any collection of numbers.
Example 1: $\{-1,3,4\}$
Example 2: $\{0, \pi, 10\}$

Welcome to College Algebra

Welcome to College Algebra

We have seen the 4 basic operations to combine numbers

Welcome to College Algebra

We have seen the 4 basic operations to combine numbers

Addition:

Welcome to College Algebra

We have seen the 4 basic operations to combine numbers

Addition:

Example: $3+4=7$

Welcome to College Algebra

We have seen the 4 basic operations to combine numbers

Addition:

Example: $3+4=7$
Commutative Property of Addition: For any numbers A, B

$$
A+B=B+A
$$

Welcome to College Algebra

We have seen the 4 basic operations to combine numbers

Addition:

Example: $3+4=7$
Commutative Property of Addition: For any numbers A, B

$$
A+B=B+A
$$

Associate Property of Addition: For A, B, and C

$$
(A+B)+C=A+(B+C)
$$

Welcome to College Algebra

We have seen the 4 basic operations to combine numbers

Addition:

Example: $3+4=7$
Commutative Property of Addition: For any numbers A, B

$$
A+B=B+A
$$

Associate Property of Addition: For A, B, and C

$$
(A+B)+C=A+(B+C)
$$

0 is the Additive Identity: For any number A

$$
A+0=A=0+A
$$

Welcome to College Algebra

We have seen the 4 basic operations to combine numbers

Addition:

Example: $3+4=7$
Commutative Property of Addition: For any numbers A, B

$$
A+B=B+A
$$

Associate Property of Addition: For A, B, and C

$$
(A+B)+C=A+(B+C)
$$

0 is the Additive Identity: For any number A

$$
A+0=A=0+A
$$

Subtraction:

Welcome to College Algebra

We have seen the 4 basic operations to combine numbers

Addition:

Example: $3+4=7$
Commutative Property of Addition: For any numbers A, B

$$
A+B=B+A
$$

Associate Property of Addition: For A, B, and C

$$
(A+B)+C=A+(B+C)
$$

0 is the Additive Identity: For any number A

$$
A+0=A=0+A
$$

Subtraction:

Example: $7-4=3$

Welcome to College Algebra

We have seen the 4 basic operations to combine numbers

Addition:

Example: $3+4=7$
Commutative Property of Addition: For any numbers A, B

$$
A+B=B+A
$$

Associate Property of Addition: For A, B, and C

$$
(A+B)+C=A+(B+C)
$$

0 is the Additive Identity: For any number A

$$
A+0=A=0+A
$$

Subtraction:

Example: 7-4=3
We can understand Subtraction as Addition of negatives
Example: $7-4=7+(-4)=3$

Welcome to College Algebra

We have seen the 4 basic operations to combine numbers

Addition:

Example: $3+4=7$
Commutative Property of Addition: For any numbers A, B

$$
A+B=B+A
$$

Associate Property of Addition: For A, B, and C

$$
(A+B)+C=A+(B+C)
$$

$\mathbf{0}$ is the Additive Identity: For any number A

$$
A+0=A=0+A
$$

Subtraction:

Example: 7-4=3
We can understand Subtraction as Addition of negatives
Example: $7-4=7+(-4)=3$
This allows us to use all the properties of Addition, which we don't have for Subtraction

Welcome to College Algebra

Welcome to College Algebra

We have seen the 4 basic operations to combine numbers
Addition
Subtraction

Welcome to College Algebra

We have seen the 4 basic operations to combine numbers
Addition
Subtraction
Multiplication:

Welcome to College Algebra

We have seen the 4 basic operations to combine numbers
Addition
Subtraction
Multiplication:
Example: $4 \cdot 3=12$

Welcome to College Algebra

We have seen the 4 basic operations to combine numbers

Addition

Subtraction
Multiplication:
Example: $4 \cdot 3=12$
Commutative Property of Multiplication: For any A, B

$$
A \cdot B=B \cdot A
$$

Welcome to College Algebra

We have seen the 4 basic operations to combine numbers

Addition

Subtraction
Multiplication:
Example: $4 \cdot 3=12$
Commutative Property of Multiplication: For any A, B

$$
A \cdot B=B \cdot A
$$

Associative Property of Multiplication: For A, B, and C

$$
(A \cdot B) \cdot C=A \cdot(B \cdot C)
$$

Welcome to College Algebra

We have seen the 4 basic operations to combine numbers

Addition

Subtraction
Multiplication:
Example: $4 \cdot 3=12$
Commutative Property of Multiplication: For any A, B

$$
A \cdot B=B \cdot A
$$

Associative Property of Multiplication: For A, B, and C

$$
(A \cdot B) \cdot C=A \cdot(B \cdot C)
$$

$\mathbf{1}$ is the Multiplicative Identity: For any number A

$$
A \cdot 1=A=1 \cdot A
$$

Welcome to College Algebra

We have seen the 4 basic operations to combine numbers
Addition
Subtraction
Multiplication:
Example: $4 \cdot 3=12$
Commutative Property of Multiplication: For any A, B

$$
A \cdot B=B \cdot A
$$

Associative Property of Multiplication: For A, B, and C

$$
(A \cdot B) \cdot C=A \cdot(B \cdot C)
$$

$\mathbf{1}$ is the Multiplicative Identity: For any number A

$$
A \cdot 1=A=1 \cdot A
$$

Division:

Welcome to College Algebra

We have seen the 4 basic operations to combine numbers
Addition
Subtraction
Multiplication:
Example: $4 \cdot 3=12$
Commutative Property of Multiplication: For any A, B

$$
A \cdot B=B \cdot A
$$

Associative Property of Multiplication: For A, B, and C

$$
(A \cdot B) \cdot C=A \cdot(B \cdot C)
$$

$\mathbf{1}$ is the Multiplicative Identity: For any number A

$$
A \cdot 1=A=1 \cdot A
$$

Division:
Example: $12 \div 4=3$

Welcome to College Algebra

We have seen the 4 basic operations to combine numbers

Addition

Subtraction
Multiplication:
Example: $4 \cdot 3=12$
Commutative Property of Multiplication: For any A, B

$$
A \cdot B=B \cdot A
$$

Associative Property of Multiplication: For A, B, and C

$$
(A \cdot B) \cdot C=A \cdot(B \cdot C)
$$

$\mathbf{1}$ is the Multiplicative Identity: For any number A

$$
A \cdot 1=A=1 \cdot A
$$

Division:
Example: $12 \div 4=3$
We can understand Division as Multiplication of reciprocals

Welcome to College Algebra

We have seen the 4 basic operations to combine numbers

Addition

Subtraction
Multiplication:
Example: $4 \cdot 3=12$
Commutative Property of Multiplication: For any A, B

$$
A \cdot B=B \cdot A
$$

Associative Property of Multiplication: For A, B, and C

$$
(A \cdot B) \cdot C=A \cdot(B \cdot C)
$$

$\mathbf{1}$ is the Multiplicative Identity: For any number A

$$
A \cdot 1=A=1 \cdot A
$$

Division:
Example: $12 \div 4=3$
We can understand Division as Multiplication of reciprocals Example: $12 \div 4=12 \cdot \frac{1}{4}=3$

Welcome to College Algebra

We have seen the 4 basic operations to combine numbers

Addition

Subtraction
Multiplication:
Example: $4 \cdot 3=12$
Commutative Property of Multiplication: For any A, B

$$
A \cdot B=B \cdot A
$$

Associative Property of Multiplication: For A, B, and C

$$
(A \cdot B) \cdot C=A \cdot(B \cdot C)
$$

$\mathbf{1}$ is the Multiplicative Identity: For any number A

$$
A \cdot 1=A=1 \cdot A
$$

Division:

Example: $12 \div 4=3$
We can understand Division as Multiplication of reciprocals Example: $12 \div 4=12 \cdot \frac{1}{4}=3$
In general, we can change division into multiplication by the reciprocal which allows us to use all the properties of Multiplication, which we don't have for Division

Welcome to College Algebra

We have seen the 4 basic operations to combine numbers

Addition

Subtraction
Multiplication:
Example: $4 \cdot 3=12$
Commutative Property of Multiplication: For any A, B

$$
A \cdot B=B \cdot A
$$

Associative Property of Multiplication: For A, B, and C

$$
(A \cdot B) \cdot C=A \cdot(B \cdot C)
$$

$\mathbf{1}$ is the Multiplicative Identity: For any number A

$$
A \cdot 1=A=1 \cdot A
$$

Division:

Example: $12 \div 4=3$
We can understand Division as Multiplication of reciprocals Example: $12 \div 4=12 \cdot \frac{1}{4}=3$
In general, we can change division into multiplication by the reciprocal which allows us to use all the properties of Multiplication, which we don't have for Division
Example: $24 \div \frac{3}{5}=24 \cdot \frac{5}{3}=40$

