More on Relations

More on Relations

Definition: A relation is a set of ordered pairs (x, y)

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values
Definition: The range of a relation is the set of y-values

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values
Definition: The range of a relation is the set of y-values
Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values
Definition: The range of a relation is the set of y-values
Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.
Example 1: $\{(-3,2),(-1,2),(1,3),(2,-2)\}$

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values
Definition: The range of a relation is the set of y-values
Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.
Example 1: $\{(-3,2),(-1,2),(1,3),(2,-2)\}$

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values Definition: The range of a relation is the set of y-values
Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.
Example 1: $\{(-\mathbf{3}, 2),(-\mathbf{1}, 2),(\mathbf{1}, 3),(\mathbf{2},-2)\}$

Domain $=\{-3,-1,1,2\}$

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values Definition: The range of a relation is the set of y-values
Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.
Example 1: $\{(-3, \mathbf{2}),(-1, \mathbf{2}),(1, \mathbf{3}),(2,-\mathbf{2})\}$

Domain $=\{-3,-1,1,2\}$
Range $=\{-2,2,3\}$

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values
Definition: The range of a relation is the set of y-values
Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.
Example 1: $\{(-3,2),(-1,2),(1,3),(2,-2)\}$

Domain $=\{-3,-1,1,2\}$
Range $=\{-2,2,3\}$
This relation is a function.

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values
Definition: The range of a relation is the set of y-values
Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.
Example 1: $\{(-3,2),(-1,2),(1,3),(2,-2)\}$

Domain $=\{-3,-1,1,2\}$
Range $=\{-2,2,3\}$
This relation is a function.
Note: A relation can still be a function with a repeated y-value

