More on Relations

More on Relations

Definition: A relation is a set of ordered pairs (x, y)

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values
Definition: The range of a relation is the set of y-values

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values
Definition: The range of a relation is the set of y-values
Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values
Definition: The range of a relation is the set of y-values
Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.

Example 4: $\{$ all points (x, y) on the graph $\}$

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values Definition: The range of a relation is the set of y-values
Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.

Example 4: \{all points (x, y) on the graph \}

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values Definition: The range of a relation is the set of y-values
Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.

Example 4: $\{$ all points (x, y) on the graph $\}$

Domain $=(-\infty, \infty)$

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values Definition: The range of a relation is the set of y-values
Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.

Example 4: $\{$ all points (x, y) on the graph $\}$

Domain $=(-\infty, \infty)=\mathbf{R}$

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values Definition: The range of a relation is the set of y-values Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.

Example 4: $\{$ all points (x, y) on the graph $\}$

Domain $=(-\infty, \infty)=\mathbf{R}$
Range $=[2, \infty)$

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values
Definition: The range of a relation is the set of y-values
Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.

Example 4: $\{$ all points (x, y) on the graph $\}$

Domain $=(-\infty, \infty)=\mathbf{R}$
Range $=[2, \infty)$
This relation is a function

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values Definition: The range of a relation is the set of y-values
Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.

Example 4: $\{$ all points (x, y) on the graph $\}$

Domain $=(-\infty, \infty)=\mathbf{R}$
Range $=[2, \infty)$
This relation is a function

