More on Relations

More on Relations

Definition: A relation is a set of ordered pairs (x, y)

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values
Definition: The range of a relation is the set of y-values

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values
Definition: The range of a relation is the set of y-values
Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values
Definition: The range of a relation is the set of y-values
Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.
Example 3: The following set of ordered pairs on the circle of radius 2 and center at the origin is a relation:

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values
Definition: The range of a relation is the set of y-values
Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.
Example 3: The following set of ordered pairs on the circle of radius 2 and center at the origin is a relation:

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values Definition: The range of a relation is the set of y-values
Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.
Example 3: The following set of ordered pairs on the circle of radius 2 and center at the origin is a relation:

Domain $=[-2,2]$

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values Definition: The range of a relation is the set of y-values Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.
Example 3: The following set of ordered pairs on the circle of radius 2 and center at the origin is a relation:

Domain $=[-2,2]$
Range $=[-2,2]$

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values
Definition: The range of a relation is the set of y-values
Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.
Example 3: The following set of ordered pairs on the circle of radius 2 and center at the origin is a relation:

Domain $=[-2,2]$
Range $=[-2,2]$
This relation is not a function

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values
Definition: The range of a relation is the set of y-values
Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.
Example 3: The following set of ordered pairs on the circle of radius 2 and center at the origin is a relation:

Domain $=[-2,2]$
Range $=[-2,2]$
This relation is not a function

