More on Relations

More on Relations

Definition: A relation is a set of ordered pairs (x, y)

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values
Definition: The range of a relation is the set of y-values

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values
Definition: The range of a relation is the set of y-values
Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values
Definition: The range of a relation is the set of y-values
Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.
Example 2: $\left\{(1,4),(-2,3),\left(\frac{1}{2},-2\right),(1,1)\right\}$

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values
Definition: The range of a relation is the set of y-values
Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.
Example 2: $\left\{(1,4),(-2,3),\left(\frac{1}{2},-2\right),(1,1)\right\}$

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values Definition: The range of a relation is the set of y-values
Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.
Example 2: $\left\{(\mathbf{1}, 4),(-\mathbf{2}, 3),\left(\frac{\mathbf{1}}{\mathbf{2}},-2\right),(\mathbf{1}, 1)\right\}$

Domain $=\left\{-2, \frac{1}{2}, 1\right\}$

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values Definition: The range of a relation is the set of y-values Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.
Example 2: $\left\{(1, \mathbf{4}),(-2, \mathbf{3}),\left(\frac{1}{2},-\mathbf{2}\right),(1, \mathbf{1})\right\}$

Domain $=\left\{-2, \frac{1}{2}, 1\right\}$
Range $=\{-2,1,3,4\}$

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values
Definition: The range of a relation is the set of y-values
Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.
Example 2: $\left\{(1,4),(-2,3),\left(\frac{1}{2},-2\right),(1,1)\right\}$

Domain $=\left\{-2, \frac{1}{2}, 1\right\}$
Range $=\{-2,1,3,4\}$
This relation is not a function since 1 is an x-value twice

More on Relations

Definition: A relation is a set of ordered pairs (x, y)
Definition: The domain of a relation is the set of x-values Definition: The range of a relation is the set of y-values
Definition: A function is a relation so that no two pairs have the same x-value. That is, no x-value shows up twice.
Example 2: $\left\{(1,4),(-2,3),\left(\frac{1}{2},-2\right),(1,1)\right\}$

Domain $=\left\{-2, \frac{1}{2}, 1\right\}$
Range $=\{-2,1,3,4\}$
This relation is not a function since 1 is an x-value twice

