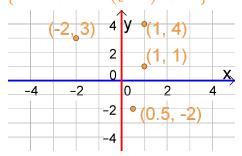
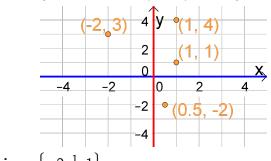
**Definition:** A *relation* is a set of ordered pairs (x, y)


**Definition:** A *relation* is a set of ordered pairs (x, y)**Definition:** The *domain* of a relation is the set of x-values

**Definition:** A *relation* is a set of ordered pairs (x, y)**Definition:** The *domain* of a relation is the set of *x*-values **Definition:** The *range* of a relation is the set of *y*-values

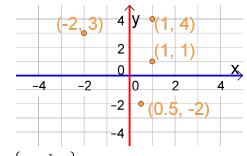
**Definition:** A *relation* is a set of ordered pairs (x, y)**Definition:** The *domain* of a relation is the set of *x*-values **Definition:** The *range* of a relation is the set of *y*-values **Definition:** A *function* is a relation so that no two pairs have the same *x*-value. That is, no *x*-value shows up twice.

**Definition:** A *relation* is a set of ordered pairs (x, y) **Definition:** The *domain* of a relation is the set of *x*-values **Definition:** The *range* of a relation is the set of *y*-values **Definition:** A *function* is a relation so that no two pairs have the same *x*-value. That is, no *x*-value shows up twice. Example 2:  $\{(1,4), (-2,3), (\frac{1}{2}, -2), (1,1)\}$ 


**Definition:** A *relation* is a set of ordered pairs (x, y) **Definition:** The *domain* of a relation is the set of *x*-values **Definition:** The *range* of a relation is the set of *y*-values **Definition:** A *function* is a relation so that no two pairs have the same *x*-value. That is, no *x*-value shows up twice. Example 2:  $\{(1, 4), (-2, 3), (\frac{1}{2}, -2), (1, 1)\}$ 



**Definition:** A *relation* is a set of ordered pairs (x, y)**Definition:** The *domain* of a relation is the set of *x*-values **Definition:** The *range* of a relation is the set of *y*-values **Definition:** A *function* is a relation so that no two pairs have the same *x*-value. That is, no *x*-value shows up twice. Example 2:  $\{(1, 4), (-2, 3), (\frac{1}{2}, -2), (1, 1)\}$ 

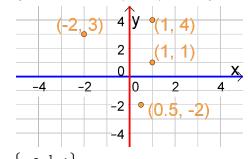



**Definition:** A *relation* is a set of ordered pairs (x, y) **Definition:** The *domain* of a relation is the set of *x*-values **Definition:** The *range* of a relation is the set of *y*-values **Definition:** A *function* is a relation so that no two pairs have the same *x*-value. That is, no *x*-value shows up twice. Example 2:  $\{(1, 4), (-2, 3), (\frac{1}{2}, -2), (1, 1)\}$ 



$$\label{eq:Domain} \begin{split} \text{Domain} &= \left\{-2, \frac{1}{2}, 1\right\} \\ \text{Range} &= \{-2, 1, 3, 4\} \end{split}$$

**Definition:** A *relation* is a set of ordered pairs (x, y)**Definition:** The *domain* of a relation is the set of *x*-values **Definition:** The *range* of a relation is the set of *y*-values **Definition:** A *function* is a relation so that no two pairs have the same *x*-value. That is, no *x*-value shows up twice. Example 2:  $\{(1,4), (-2,3), (\frac{1}{2}, -2), (1,1)\}$ 




 $\textbf{Domain} = \left\{-2, \tfrac{1}{2}, 1\right\}$ 

**Range** =  $\{-2, 1, 3, 4\}$ 

This relation is not a function since 1 is an x-value twice

**Definition:** A *relation* is a set of ordered pairs (x, y) **Definition:** The *domain* of a relation is the set of *x*-values **Definition:** The *range* of a relation is the set of *y*-values **Definition:** A *function* is a relation so that no two pairs have the same *x*-value. That is, no *x*-value shows up twice. Example 2:  $\{(1,4), (-2,3), (\frac{1}{2}, -2), (1,1)\}$ 



 $\textbf{Domain} = \left\{-2, \tfrac{1}{2}, 1\right\}$ 

**Range** =  $\{-2, 1, 3, 4\}$ 

This relation is not a function since 1 is an x-value twice