
Solving a Rational Inequality

Solve the Rational Inequality:
We graphed the function f (x) = 1

x−1 previously.
Now we want to know when this function y = f (x) ≤ 1

We saw and can see in our graph, that 1
x−1 can change from 1

x−1 < 1 to
1

x−1 > 1 at the vertical asymptote and at the point when 1
x−1 = 1

We need to find x values at the vertical asymptote and point of equality
Vertical Asymptote
x − 1 = 0
x = 1

Solving 1
x−1 = 1

We find: x = 2
Now we can break our x number line (axis) into 3 regions

http://coobermath.com/Rational_Functions/Graphing_Rational_Functions/Graph_1_xmin1.pdf
http://coobermath.com/Math_Meta/General_Conclusions/Solving_Inequalities_General.pdf
http://coobermath.com/Rational_Functions/Solving_Rational_Inequalities/Solving_Rational_Inequality_Example_1_Equality.pdf
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Checking the region x > 2 we can let x = 3
Conclusion: The solutions to 1

x−1 ≤ 1 are: (−∞, 1) ∪ [2,∞)
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