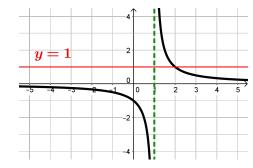

Solve the Rational Inequality:

$$\frac{1}{x-1} \leq 1$$

Solve the Rational Inequality:

$$rac{1}{x-1} \leq 1$$
 (* We graphed) the function $f(x) = rac{1}{x-1}$ previously.

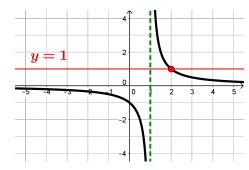


Solve the Rational Inequality:

$$\frac{1}{x-1} \le 1$$

• We graphed the function $f(x) = \frac{1}{x-1}$ previously.

Now we want to know when this function $y = f(x) \le 1$

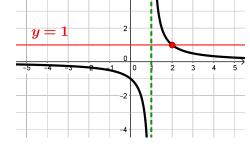

Solve the Rational Inequality:

$$\frac{1}{x-1} \le 1$$

• We graphed the function $f(x) = \frac{1}{x-1}$ previously.

Now we want to know when this function $y = f(x) \le 1$

• We saw and can see in our graph, that $\frac{1}{x-1}$ can change from $\frac{1}{x-1} < 1$ to $\frac{1}{x-1} > 1$ at the vertical asymptote and at the point when $\frac{1}{x-1} = 1$

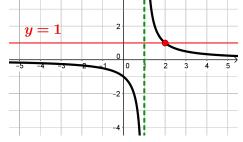

Solve the Rational Inequality:

$$\frac{1}{x-1} \le 1$$

• We graphed the function $f(x) = \frac{1}{x-1}$ previously.

Now we want to know when this function $y = f(x) \le 1$

• We saw and can see in our graph, that $\frac{1}{x-1}$ can change from $\frac{1}{x-1} < 1$ to $\frac{1}{x-1} > 1$ at the vertical asymptote and at the point when $\frac{1}{x-1} = 1$ We need to find x values at the vertical asymptote and point of equality


Solve the Rational Inequality:

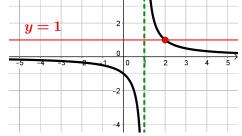
$$\frac{1}{x-1} \le 1$$

• We graphed the function $f(x) = \frac{1}{x-1}$ previously.

Now we want to know when this function $y = f(x) \le 1$

We saw and can see in our graph, that $\frac{1}{x-1}$ can change from $\frac{1}{x-1} < 1$ to $\frac{1}{x-1} > 1$ at the vertical asymptote and at the point when $\frac{1}{x-1} = 1$. We need to find x values at the vertical asymptote and point of equality Vertical Asymptote

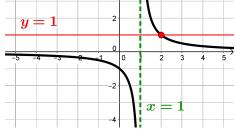
Solve the Rational Inequality:


$$\frac{1}{x-1} \le 1$$

• We graphed the function $f(x) = \frac{1}{x-1}$ previously.

Now we want to know when this function $y = f(x) \le 1$

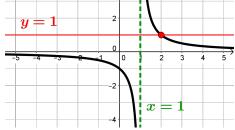
We saw and can see in our graph, that $\frac{1}{x-1}$ can change from $\frac{1}{x-1} < 1$ to $\frac{1}{x-1} > 1$ at the vertical asymptote and at the point when $\frac{1}{x-1} = 1$. We need to find x values at the vertical asymptote and point of equality Vertical Asymptote


$$x-1=0$$

Solve the Rational Inequality:

 $\frac{1}{x-1} \le 1$ • We graphed the function $f(x) = \frac{1}{x-1}$ previously. Now we want to know when this function $y = f(x) \le 1$ • We saw and can see in our graph, that $\frac{1}{x-1}$ can change from $\frac{1}{x-1} < 1$ to $\frac{1}{x-1} > 1$ at the vertical asymptote and at the point when $\frac{1}{x-1} = 1$ We need to find x values at the vertical asymptote and point of equality Vertical Asymptote x - 1 = 0

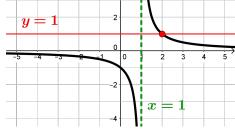
x = 1



Solve the Rational Inequality:

 $\frac{1}{x-1} \le 1$ We graphed the function $f(x) = \frac{1}{x-1}$ previously. Now we want to know when this function $y = f(x) \le 1$ We saw and can see in our graph, that $\frac{1}{x-1}$ can change from $\frac{1}{x-1} < 1$ to $\frac{1}{x-1} > 1$ at the vertical asymptote and at the point when $\frac{1}{x-1} = 1$ We need to find x values at the vertical asymptote and point of equality Vertical Asymptote x = 1 = 0

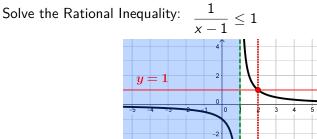
$$x = 1$$


$$x = 1$$
Solving $\frac{1}{x-1} = 1$

Solve the Rational Inequality:

 $\frac{1}{x-1} \le 1$ • We graphed the function $f(x) = \frac{1}{x-1}$ previously. Now we want to know when this function $y = f(x) \le 1$ • We saw and can see in our graph, that $\frac{1}{x-1}$ can change from $\frac{1}{x-1} < 1$ to $\frac{1}{x-1} > 1$ at the vertical asymptote and at the point when $\frac{1}{x-1} = 1$ We need to find x values at the vertical asymptote and point of equality Vertical Asymptote x - 1 = 0

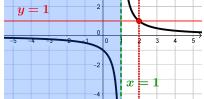
$$x = 1$$
Solving $\frac{1}{x-1} = 1$
We find: $x = 2$


Solve the Rational Inequality:

 $\frac{1}{x-1} \leq 1$ • We graphed the function $f(x) = \frac{1}{x-1}$ previously. Now we want to know when this function $y = f(x) \le 1$ • We saw and can see in our graph, that $\frac{1}{x-1}$ can change from $\frac{1}{x-1} < 1$ to $\frac{1}{x-1} > 1$ at the vertical asymptote and at the point when $\frac{1}{x-1} = 1$ We need to find x values at the vertical asymptote and point of equality Vertical Asymptote x - 1 = 02 y=1x = 1• Solving $\frac{1}{r-1} = 1$ We find: x = 2-2

x =

Now we can break our x number line (axis) into 3 regions


Solving a Rational Inequality ____ Solve the Rational Inequality: ≤ 1 $\overline{x-1}$ _4↑ ٠ 2 y = 1Δ 0 ŝ. -2 \boldsymbol{x} F

 \boldsymbol{x}

Checking the region x < 1 we can let x = 0

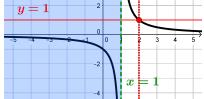
Solve the Rational Inequality: $\frac{1}{x-1} \le 1$

Checking the region x < 1 we can let x = 0For x = 0: $f(0) = \frac{1}{0-1}$

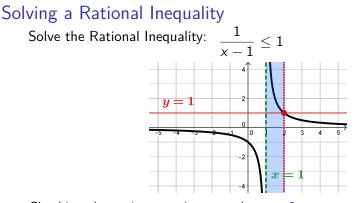
Solve the Rational Inequality: $\frac{1}{x-1} \le 1$

Checking the region x < 1 we can let x = 0For x = 0: $f(0) = \frac{1}{0-1} = -1$

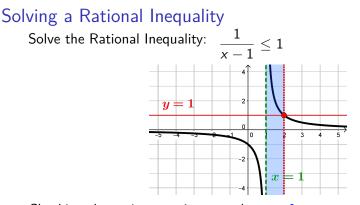
Solve the Rational Inequality: $\frac{1}{x-1} \le 1$

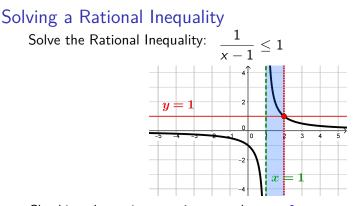

Checking the region x < 1 we can let x = 0For x = 0: $f(0) = \frac{1}{0-1} = -1 < 1$

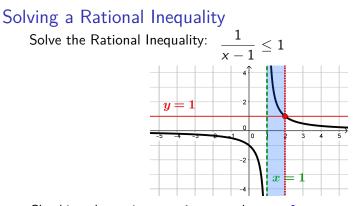
Solve the Rational Inequality: $\frac{1}{x-1} \le 1$

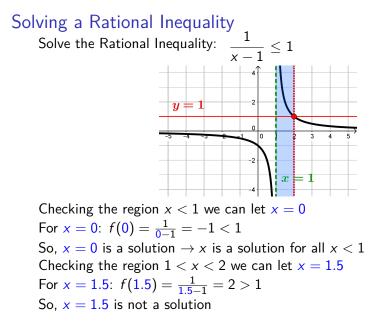


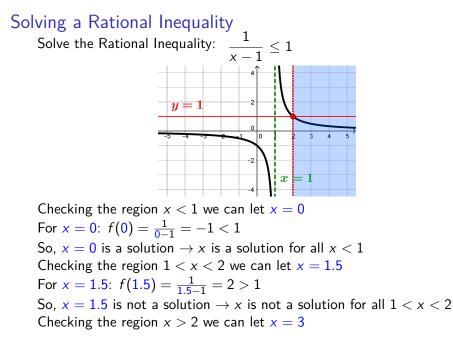
Checking the region x < 1 we can let x = 0For x = 0: $f(0) = \frac{1}{0-1} = -1 < 1$ So, x = 0 is a solution

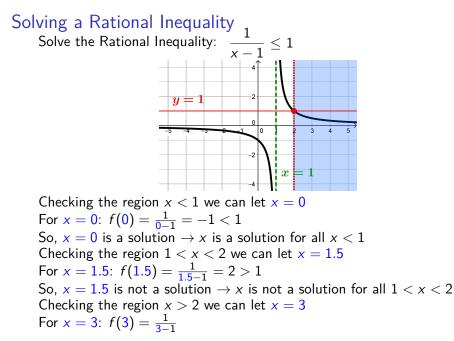

Solve the Rational Inequality: $\frac{1}{x-1} \le 1$

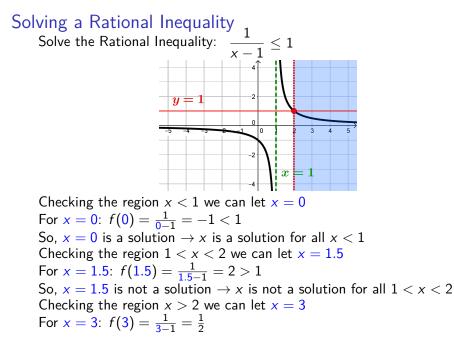

Checking the region x < 1 we can let x = 0For x = 0: $f(0) = \frac{1}{0-1} = -1 < 1$ So, x = 0 is a solution $\rightarrow x$ is a solution for all x < 1

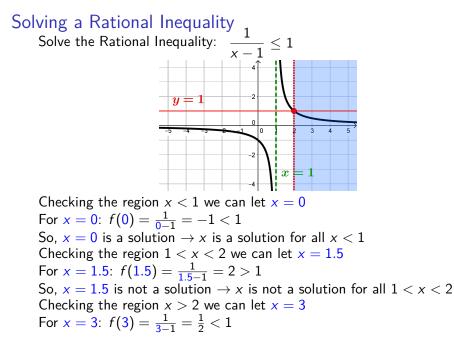

Checking the region x < 1 we can let x = 0For x = 0: $f(0) = \frac{1}{0-1} = -1 < 1$ So, x = 0 is a solution $\rightarrow x$ is a solution for all x < 1Checking the region 1 < x < 2 we can let x = 1.5

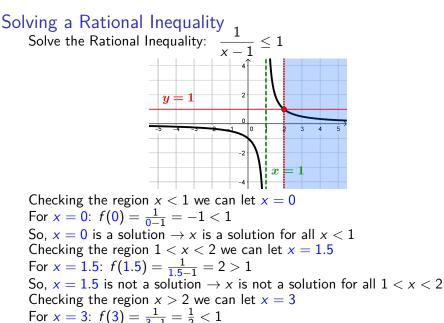

Checking the region x < 1 we can let x = 0For x = 0: $f(0) = \frac{1}{0-1} = -1 < 1$ So, x = 0 is a solution $\rightarrow x$ is a solution for all x < 1Checking the region 1 < x < 2 we can let x = 1.5For x = 1.5: $f(1.5) = \frac{1}{1.5-1}$

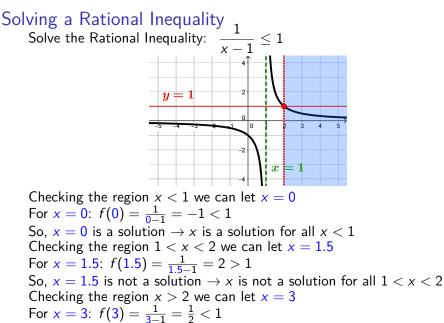

Checking the region x < 1 we can let x = 0For x = 0: $f(0) = \frac{1}{0-1} = -1 < 1$ So, x = 0 is a solution $\rightarrow x$ is a solution for all x < 1Checking the region 1 < x < 2 we can let x = 1.5For x = 1.5: $f(1.5) = \frac{1}{1.5-1} = 2$

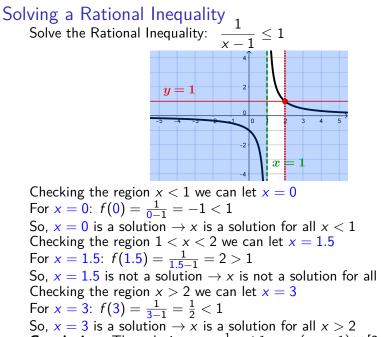



Checking the region x < 1 we can let x = 0For x = 0: $f(0) = \frac{1}{0-1} = -1 < 1$ So, x = 0 is a solution $\rightarrow x$ is a solution for all x < 1Checking the region 1 < x < 2 we can let x = 1.5For x = 1.5: $f(1.5) = \frac{1}{1.5-1} = 2 > 1$









So, x = 3 is a solution

So, x = 3 is a solution $\rightarrow x$ is a solution for all x > 2

So, x = 1.5 is not a solution $\rightarrow x$ is not a solution for all 1 < x < 2**Conclusion:** The solutions to $\frac{1}{x-1} \leq 1$ are: $(-\infty, 1) \cup [2, \infty)$