Reducing Rational Functions - Example 2

Reducing Rational Functions - Example 2

- We define a Rational Function to be:

Reducing Rational Functions - Example 2

we ctine a Rational Function to be:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Reducing Rational Functions - Example 2

we ctine a Rational Function to be:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Where $P(x)$ and $D(x)$ are both Polynomials.

Reducing Rational Functions - Example 2

we define a Rational Function to be:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Where $P(x)$ and $D(x)$ are both Polynomials.
we saw we can simplify Rationals if P and D have common factor(s).

Reducing Rational Functions - Example 2

- We define a Rational Function to be:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Where $P(x)$ and $D(x)$ are both Polynomials.
We saw we can simplify Rationals if P and D have common factor(s). Now let's look at some more examples.

Reducing Rational Functions - Example 2

- We define a Rational Function to be:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Where $P(x)$ and $D(x)$ are both Polynomials.
We saw we can simplify Rationals if P and D have common factor(s). Now let's look at some more examples.
Example 2: Simplify

$$
\frac{x+2}{3 x^{2}+6 x}=
$$

Reducing Rational Functions - Example 2

- We define a Rational Function to be:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Where $P(x)$ and $D(x)$ are both Polynomials.
we saw we can simplify Rationals if P and D have common factor(s). Now let's look at some more examples.
Example 2: Simplify

$$
\frac{x+2}{3 x^{2}+6 x}=
$$

We can simplify a fraction if $P(x)$ and $D(x)$ have a common factor

Reducing Rational Functions - Example 2

- We define a Rational Function to be:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Where $P(x)$ and $D(x)$ are both Polynomials.

- we saw we can simplify Rationals if P and D have common factor(s). Now let's look at some more examples.
Example 2: Simplify

$$
\frac{x+2}{3 x^{2}+6 x}=
$$

We can simplify a fraction if $P(x)$ and $D(x)$ have a common factor To see if $P(x)$ and $D(x)$ have common factors, we need to write them in

$$
P(x)=a \cdot\left(x-r_{1}\right) \cdot\left(x-r_{2}\right) \cdots\left(x-r_{k}\right)
$$

Reducing Rational Functions - Example 2

- We define a Rational Function to be:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Where $P(x)$ and $D(x)$ are both Polynomials.

- We saw we can simplify Rationals if P and D have common factor(s).

Now let's look at some more examples.
Example 2: Simplify

$$
\frac{x+2}{3 x^{2}+6 x}=
$$

We can simplify a fraction if $P(x)$ and $D(x)$ have a common factor To see if $P(x)$ and $D(x)$ have common factors, we need to write them in factored form $P(x)=a \cdot\left(x-r_{1}\right) \cdot\left(x-r_{2}\right) \cdots\left(x-r_{k}\right)$
The top is already in factored form.

Reducing Rational Functions - Example 2

- We define a Rational Function to be:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Where $P(x)$ and $D(x)$ are both Polynomials.

- We saw we can simplify Rationals if P and D have common factor(s).

Now let's look at some more examples.
Example 2: Simplify

$$
\frac{x+2}{3 x^{2}+6 x}=\frac{(x+2)}{}
$$

We can simplify a fraction if $P(x)$ and $D(x)$ have a common factor To see if $P(x)$ and $D(x)$ have common factors, we need to write them in factored form $P(x)=a \cdot\left(x-r_{1}\right) \cdot\left(x-r_{2}\right) \cdots\left(x-r_{k}\right)$
The top is already in factored form.
To factor the bottom, we can factor out $3 x$

Reducing Rational Functions - Example 2

- We define a Rational Function to be:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Where $P(x)$ and $D(x)$ are both Polynomials.
We saw we can simplify Rationals if P and D have common factor(s).
Now let's look at some more examples.
Example 2: Simplify

$$
\frac{x+2}{3 x^{2}+6 x}=\frac{(x+2)}{3 x \cdot(x+2)}
$$

We can simplify a fraction if $P(x)$ and $D(x)$ have a common factor To see if $P(x)$ and $D(x)$ have common factors, we need to write them in fractored form $P(x)=a \cdot\left(x-r_{1}\right) \cdot\left(x-r_{2}\right) \cdots\left(x-r_{k}\right)$
The top is already in factored form.
To factor the bottom, we can factor out $3 x$

Reducing Rational Functions - Example 2

- We define a Rational Function to be:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Where $P(x)$ and $D(x)$ are both Polynomials.
We saw we can simplify Rationals if P and D have common factor(s).
Now let's look at some more examples.
Example 2: Simplify

$$
\frac{x+2}{3 x^{2}+6 x}=\frac{(x+2)}{3 x \cdot(x+2)}=\frac{1}{3 x}
$$

We can simplify a fraction if $P(x)$ and $D(x)$ have a common factor To see if $P(x)$ and $D(x)$ have common factors, we need to write them in factored form $P(x)=a \cdot\left(x-r_{1}\right) \cdot\left(x-r_{2}\right) \cdots\left(x-r_{k}\right)$
The top is already in factored form.
To factor the bottom, we can factor out $3 x$
Now we can make the simplification $\frac{(x+2)}{(x+2)}=1$

Reducing Rational Functions - Example 2

- We define a Rational Function to be:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Where $P(x)$ and $D(x)$ are both Polynomials.
We saw we can simplify Rationals if P and D have common factor(s).
Now let's look at some more examples.
Example 2: Simplify

$$
\frac{x+2}{3 x^{2}+6 x}=\frac{(x+2)}{3 x \cdot(x+2)}=\frac{1}{3 x}
$$

We can simplify a fraction if $P(x)$ and $D(x)$ have a common factor To see if $P(x)$ and $D(x)$ have common factors, we need to write them in factored form $P(x)=a \cdot\left(x-r_{1}\right) \cdot\left(x-r_{2}\right) \cdots\left(x-r_{k}\right)$
The top is already in factored form.
To factor the bottom, we can factor out $3 x$
Now we can make the simplification $\frac{(x+2)}{(x+2)}=1$
Leaving us with:

$$
\frac{x+2}{3 x^{2}+6 x}=\frac{1}{3 x}
$$

Reducing Rational Functions - Example 2

- We define a Rational Function to be:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Where $P(x)$ and $D(x)$ are both Polynomials.
We saw we can simplify Rationals if P and D have common factor(s).
Now let's look at some more examples.
Example 2: Simplify

$$
\frac{x+2}{3 x^{2}+6 x}=\frac{(x+2)}{3 x \cdot(x+2)}=\frac{1}{3 x}
$$

We can simplify a fraction if $P(x)$ and $D(x)$ have a common factor To see if $P(x)$ and $D(x)$ have common factors, we need to write them in factored form $P(x)=a \cdot\left(x-r_{1}\right) \cdot\left(x-r_{2}\right) \cdots\left(x-r_{k}\right)$
The top is already in factored form.
To factor the bottom, we can factor out $3 x$
Now we can make the simplification $\frac{(x+2)}{(x+2)}=1$
Leaving us with:

$$
\frac{x+2}{3 x^{2}+6 x}=\frac{1}{3 x}
$$

Note: $\frac{(x+2)}{(x+2)}=1$ for $(x+2) \neq 0$, so this equality is true for $x \neq-2$

