• We saw with fractions that we can simplify compound fractions.

$$\frac{\frac{1}{x+1} + \frac{1}{x+2}}{\frac{1}{x^2+3x+2} + 1} =$$

• We saw with fractions that we can simplify compound fractions. Similarly, we can also have compound Rational Expressions: **Example:** Simplify

 $\frac{\frac{1}{x+1} + \frac{1}{x+2}}{\frac{1}{x^2+3x+2} + 1} =$

• Like Example 1 we want to reduce the fractions $\frac{1}{x+1}$, $\frac{1}{x+2}$, and $\frac{1}{x^2+3x+2}$

• We saw with fractions that we can simplify compound fractions. Similarly, we can also have compound Rational Expressions: **Example:** Simplify

 $\frac{\frac{1}{x+1} + \frac{1}{x+2}}{\frac{1}{x^2+3x+2} + 1} =$

• Like Example 1) we want to reduce the fractions $\frac{1}{x+1}$, $\frac{1}{x+2}$, and $\frac{1}{x^2+3x+2}$ To reduce $\frac{1}{x+1}$ we need to multiply by x + 1

• We saw with fractions that we can simplify compound fractions. Similarly, we can also have compound Rational Expressions: **Example:** Simplify

 $\frac{\frac{1}{x+1} + \frac{1}{x+2}}{\frac{1}{x^2+3x+2} + 1} =$

Like Example 1 we want to reduce the fractions $\frac{1}{x+1}$, $\frac{1}{x+2}$, and $\frac{1}{x^2+3x+2}$ To reduce $\frac{1}{x+1}$ we need to multiply by x + 1To reduce $\frac{1}{x+2}$ we need to multiply by x + 2

• We saw with fractions that we can simplify compound fractions. Similarly, we can also have compound Rational Expressions: **Example:** Simplify

 $\frac{\frac{1}{x+1} + \frac{1}{x+2}}{\frac{1}{x^2+3x+2} + 1} =$

• Like Example 1) we want to reduce the fractions $\frac{1}{x+1}$, $\frac{1}{x+2}$, and $\frac{1}{x^2+3x+2}$ To reduce $\frac{1}{x+1}$ we need to multiply by x + 1To reduce $\frac{1}{x+2}$ we need to multiply by x + 2What do we need to multiply by to reduce $\frac{1}{x^2+3x+2}$?

• We saw with fractions that we can simplify compound fractions. Similarly, we can also have compound Rational Expressions: **Example:** Simplify

 $\frac{\frac{1}{x+1} + \frac{1}{x+2}}{\frac{1}{x^2+3x+2} + 1} =$

• Like Example 1 we want to reduce the fractions $\frac{1}{x+1}$, $\frac{1}{x+2}$, and $\frac{1}{x^2+3x+2}$ To reduce $\frac{1}{x+1}$ we need to multiply by x + 1To reduce $\frac{1}{x+2}$ we need to multiply by x + 2What do we need to multiply by to reduce $\frac{1}{x^2+3x+2}$? We can multiply by $x^2 + 3x + 2$, but can be more strategic by • Factoring

• We saw with fractions that we can simplify compound fractions. Similarly, we can also have compound Rational Expressions: **Example:** Simplify

 $\frac{\frac{1}{x+1} + \frac{1}{x+2}}{\frac{1}{x^2+3x+2} + 1} =$

• Like Example 1 we want to reduce the fractions $\frac{1}{x+1}$, $\frac{1}{x+2}$, and $\frac{1}{x^2+3x+2}$ To reduce $\frac{1}{x+1}$ we need to multiply by x + 1To reduce $\frac{1}{x+2}$ we need to multiply by x + 2What do we need to multiply by to reduce $\frac{1}{x^2+3x+2}$? We can multiply by $x^2 + 3x + 2$, but can be more strategic by • Factoring $x^2 + 3x + 2 = (x + 1)(x + 2)$

• We saw with fractions that we can simplify compound fractions. Similarly, we can also have compound Rational Expressions: **Example:** Simplify

 $\frac{\frac{1}{x+1} + \frac{1}{x+2}}{\frac{1}{x^2+3x+2} + 1} =$

• Like Example 1 we want to reduce the fractions $\frac{1}{x+1}$, $\frac{1}{x+2}$, and $\frac{1}{x^2+3x+2}$ To reduce $\frac{1}{x+1}$ we need to multiply by x + 1To reduce $\frac{1}{x+2}$ we need to multiply by x + 2What do we need to multiply by to reduce $\frac{1}{x^2+3x+2}$? We can multiply by $x^2 + 3x + 2$, but can be more strategic by • Factoring $x^2 + 3x + 2 = (x + 1)(x + 2)$ So, we can reduce all of them by multiplying by (x + 1)(x + 2)

• We saw with fractions that we can simplify compound fractions. Similarly, we can also have compound Rational Expressions: **Example:** Simplify

 $\frac{\frac{1}{x+1} + \frac{1}{x+2}}{\frac{1}{x^2+3x+2} + 1} = \frac{\frac{1}{x+1} + \frac{1}{x+2}}{\frac{1}{x^2+3x+2} + 1} \cdot \frac{(x+1)(x+2)}{(x+1)(x+2)}$

• Like Example 1 we want to reduce the fractions $\frac{1}{x+1}$, $\frac{1}{x+2}$, and $\frac{1}{x^2+3x+2}$ To reduce $\frac{1}{x+1}$ we need to multiply by x + 1To reduce $\frac{1}{x+2}$ we need to multiply by x + 2What do we need to multiply by to reduce $\frac{1}{x^2+3x+2}$? We can multiply by $x^2 + 3x + 2$, but can be more strategic by • Factoring $x^2 + 3x + 2 = (x + 1)(x + 2)$ So, we can reduce all of them by multiplying by (x + 1)(x + 2)

• We saw with fractions that we can simplify compound fractions. Similarly, we can also have compound Rational Expressions: **Example:** Simplify

$$\frac{\frac{1}{x+1} + \frac{1}{x+2}}{\frac{1}{x^2+3x+2} + 1} = \frac{\frac{1}{x+1} + \frac{1}{x+2}}{\frac{1}{x^2+3x+2} + 1} \cdot \frac{(x+1)(x+2)}{(x+1)(x+2)}$$
$$= \frac{\frac{(x+1)(x+2)}{x+1} + \frac{(x+1)(x+2)}{x+2}}{\frac{(x+1)(x+2)}{x^2+3x+2} + (x+1)(x+2)}$$

• Like Example 1 we want to reduce the fractions $\frac{1}{x+1}$, $\frac{1}{x+2}$, and $\frac{1}{x^2+3x+2}$ To reduce $\frac{1}{x+1}$ we need to multiply by x + 1To reduce $\frac{1}{x+2}$ we need to multiply by x + 2What do we need to multiply by to reduce $\frac{1}{x^2+3x+2}$? We can multiply by $x^2 + 3x + 2$, but can be more strategic by • Factoring $x^2 + 3x + 2 = (x + 1)(x + 2)$ So, we can reduce all of them by multiplying by (x + 1)(x + 2)

$$\frac{\frac{1}{x+1} + \frac{1}{x+2}}{\frac{1}{x^2+3x+2} + 1} = \frac{\frac{1}{x+1} + \frac{1}{x+2}}{\frac{1}{x^2+3x+2} + 1} \cdot \frac{(x+1)(x+2)}{(x+1)(x+2)}$$

$$= \frac{\frac{(x+1)(x+2)}{x+2} + \frac{(x+1)(x+2)}{x+2}}{\frac{(x+1)(x+2)}{x+2} + (x+1)(x+2)}$$

$$= \frac{x+2+x+1}{1+(x+1)(x+2)}$$
• Like Example 1) we want to reduce the fractions $\frac{1}{x+1}$, $\frac{1}{x+2}$, and $\frac{1}{x^2+3x+2}$.
To reduce $\frac{1}{x+1}$ we need to multiply by $x + 1$.
To reduce $\frac{1}{x+2}$ we need to multiply by $x + 2$.
What do we need to multiply by to reduce $\frac{1}{x^2+3x+2}$?
We can multiply by $x^2 + 3x + 2$, but can be more strategic by Factoring
 $x^2 + 3x + 2 = (x+1)(x+2)$.
So, we can reduce all of them by multiplying by $(x + 1)(x + 2)$.

$$\frac{\frac{1}{x+1} + \frac{1}{x+2}}{\frac{1}{x^2+3x+2} + 1} = \frac{\frac{1}{x+1} + \frac{1}{x+2}}{\frac{1}{x^2+3x+2} + 1} \cdot \frac{(x+1)(x+2)}{(x+1)(x+2)}$$

$$= \frac{\frac{(x+1)(x+2)}{x+2} + \frac{(x+1)(x+2)}{x+2}}{\frac{(x+1)(x+2)}{x+2} + (x+1)(x+2)}$$

$$= \frac{x+2+x+1}{1+(x+1)(x+2)}$$
• Like Example 1 we want to reduce the fractions $\frac{1}{x+1}$, $\frac{1}{x+2}$, and $\frac{1}{x^2+3x+2}$.
To reduce $\frac{1}{x+1}$ we need to multiply by $x + 1$.
To reduce $\frac{1}{x+2}$ we need to multiply by $x + 2$.
What do we need to multiply by to reduce $\frac{1}{x^2+3x+2}$?
We can multiply by $x^2 + 3x + 2$, but can be more strategic by • Factoring $x^2 + 3x + 2 = (x+1)(x+2)$.
So, we can reduce all of them by multiplying by $(x + 1)(x + 2)$.
We can use $(x + 1)(x + 2) = x^2 + 3x + 2$ to simplify the bottom

$$\frac{\frac{1}{x+1} + \frac{1}{x+2}}{\frac{1}{x^2+3x+2} + 1} = \frac{\frac{1}{x+1} + \frac{1}{x+2}}{\frac{1}{x^2+3x+2} + 1} \cdot \frac{(x+1)(x+2)}{(x+1)(x+2)}$$

$$= \frac{\frac{(x+1)(x+2)}{x+2} + \frac{(x+1)(x+2)}{x+2}}{\frac{(x+1)(x+2)}{x+2} + (x+1)(x+2)}$$

$$= \frac{x+2+x+1}{1+(x+1)(x+2)} = \frac{2x+3}{x^2+3x+3}$$
• Like Example 1) we want to reduce the fractions $\frac{1}{x+1}$, $\frac{1}{x+2}$, and $\frac{1}{x^2+3x+2}$.
To reduce $\frac{1}{x+2}$ we need to multiply by $x + 1$.
To reduce $\frac{1}{x+2}$ we need to multiply by $x + 2$.
What do we need to multiply by to reduce $\frac{1}{x^2+3x+2}$?
We can multiply by $x^2 + 3x + 2$, but can be more strategic by • Factoring $x^2 + 3x + 2 = (x+1)(x+2)$.
So, we can reduce all of them by multiplying by $(x + 1)(x + 2)$.