Adding Rationals - General

Adding Rationals - General

If we want to add two Rational Expressions:
$\frac{P(x)}{D(x)}+\frac{Q(x)}{E(x)}$

Adding Rationals - General

If we want to add two Rational Expressions:
$\frac{P(x)}{D(x)}+\frac{Q(x)}{E(x)}$

Then we need to get common denominators, which is

Adding Rationals - General

If we want to add two Rational Expressions:
$\frac{P(x)}{D(x)}+\frac{Q(x)}{E(x)}$

Then we need to get common denominators, which is \rightarrow Like with Fractions To keep the degrees of the polynomials as low as possible, we \rightarrow factor the denominators $D(x)$ and $E(x)$ to look for common factors.

Adding Rationals - General

If we want to add two Rational Expressions:
$\frac{P(x)}{D(x)}+\frac{Q(x)}{E(x)}=\frac{P(x)}{a\left(x-k_{1}\right)\left(x-k_{2}\right)}+\frac{Q(x)}{b\left(x-k_{1}\right)\left(x-k_{3}\right)}$

Then we need to get common denominators, which is
To keep the degrees of the polynomials as low as possible, we the denominators $D(x)$ and $E(x)$ to look for common factors.

Adding Rationals - General

If we want to add two Rational Expressions:
$\frac{P(x)}{D(x)}+\frac{Q(x)}{E(x)}=\frac{P(x)}{a\left(x-k_{1}\right)\left(x-k_{2}\right)}+\frac{Q(x)}{b\left(x-k_{1}\right)\left(x-k_{3}\right)}$

Then we need to get common denominators, which is
To keep the degrees of the polynomials as low as possible, we the denominators $D(x)$ and $E(x)$ to look for common factors.
For any factor missing from the one of the denominators, we need to multiply the top and bottom of the Rational by the missing factor.

Adding Rationals - General

If we want to add two Rational Expressions:

$$
\begin{aligned}
& \frac{P(x)}{D(x)}+\frac{Q(x)}{E(x)}=\frac{P(x)}{a\left(x-k_{1}\right)\left(x-k_{2}\right)}+\frac{Q(x)}{b\left(x-k_{1}\right)\left(x-k_{3}\right)} \\
& \quad=\frac{b\left(x-k_{3}\right)}{b\left(x-k_{3}\right)} \cdot \frac{P(x)}{a\left(x-k_{1}\right)\left(x-k_{2}\right)}+\frac{Q(x)}{b\left(x-k_{1}\right)\left(x-k_{3}\right)} \cdot \frac{a\left(x-k_{2}\right)}{a\left(x-k_{2}\right)}
\end{aligned}
$$

Then we need to get common denominators, which is
To keep the degrees of the polynomials as low as possible, we the denominators $D(x)$ and $E(x)$ to look for common factors.
For any factor missing from the one of the denominators, we need to multiply the top and bottom of the Rational by the missing factor.

Adding Rationals - General

If we want to add two Rational Expressions:

$$
\begin{aligned}
& \frac{P(x)}{D(x)}+\frac{Q(x)}{E(x)}=\frac{P(x)}{a\left(x-k_{1}\right)\left(x-k_{2}\right)}+\frac{Q(x)}{b\left(x-k_{1}\right)\left(x-k_{3}\right)} \\
& \quad=\frac{b\left(x-k_{3}\right)}{b\left(x-k_{3}\right)} \cdot \frac{P(x)}{a\left(x-k_{1}\right)\left(x-k_{2}\right)}+\frac{Q(x)}{b\left(x-k_{1}\right)\left(x-k_{3}\right)} \cdot \frac{a\left(x-k_{2}\right)}{a\left(x-k_{2}\right)}
\end{aligned}
$$

Then we need to get common denominators, which is
To keep the degrees of the polynomials as low as possible, we the denominators $D(x)$ and $E(x)$ to look for common factors.
For any factor missing from the one of the denominators, we need to multiply the top and bottom of the Rational by the missing factor.
Note: The factors may be constants or polynomials

Adding Rationals - General

If we want to add two Rational Expressions:

$$
\begin{aligned}
& \frac{P(x)}{D(x)}+\frac{Q(x)}{E(x)}=\frac{P(x)}{a\left(x-k_{1}\right)\left(x-k_{2}\right)}+\frac{Q(x)}{b\left(x-k_{1}\right)\left(x-k_{3}\right)} \\
& \quad=\frac{b\left(x-k_{3}\right)}{b\left(x-k_{3}\right)} \cdot \frac{P(x)}{a\left(x-k_{1}\right)\left(x-k_{2}\right)}+\frac{Q(x)}{b\left(x-k_{1}\right)\left(x-k_{3}\right)} \cdot \frac{a\left(x-k_{2}\right)}{a\left(x-k_{2}\right)}
\end{aligned}
$$

Then we need to get common denominators, which is
To keep the degrees of the polynomials as low as possible, we the denominators $D(x)$ and $E(x)$ to look for common factors.
For any factor missing from the one of the denominators, we need to multiply the top and bottom of the Rational by the missing factor.
Note: The factors may be constants or polynomials
With the common denominator, we can now add the fractions

Adding Rationals - General

If we want to add two Rational Expressions:

$$
\begin{aligned}
& \frac{P(x)}{D(x)}+\frac{Q(x)}{E(x)}=\frac{P(x)}{a\left(x-k_{1}\right)\left(x-k_{2}\right)}+\frac{Q(x)}{b\left(x-k_{1}\right)\left(x-k_{3}\right)} \\
& \quad=\frac{b\left(x-k_{3}\right)}{b\left(x-k_{3}\right)} \cdot \frac{P(x)}{a\left(x-k_{1}\right)\left(x-k_{2}\right)}+\frac{Q(x)}{b\left(x-k_{1}\right)\left(x-k_{3}\right)} \cdot \frac{a\left(x-k_{2}\right)}{a\left(x-k_{2}\right)} \\
& \quad=\frac{b\left(x-k_{3}\right) P(x)+a\left(x-k_{2}\right) Q(x)}{a b\left(x-k_{1}\right)\left(x-k_{2}\right)\left(x-k_{3}\right)}
\end{aligned}
$$

Then we need to get common denominators, which is Like with Fractions
To keep the degrees of the polynomials as low as possible, we factor the denominators $D(x)$ and $E(x)$ to look for common factors.
For any factor missing from the one of the denominators, we need to multiply the top and bottom of the Rational by the missing factor.
Note: The factors may be constants or polynomials
With the common denominator, we can now add the fractions

Adding Rationals - General

If we want to add two Rational Expressions:

$$
\begin{aligned}
& \frac{P(x)}{D(x)}+\frac{Q(x)}{E(x)}=\frac{P(x)}{a\left(x-k_{1}\right)\left(x-k_{2}\right)}+\frac{Q(x)}{b\left(x-k_{1}\right)\left(x-k_{3}\right)} \\
& \quad=\frac{b\left(x-k_{3}\right)}{b\left(x-k_{3}\right)} \cdot \frac{P(x)}{a\left(x-k_{1}\right)\left(x-k_{2}\right)}+\frac{Q(x)}{b\left(x-k_{1}\right)\left(x-k_{3}\right)} \cdot \frac{a\left(x-k_{2}\right)}{a\left(x-k_{2}\right)} \\
& \quad=\frac{b\left(x-k_{3}\right) P(x)+a\left(x-k_{2}\right) Q(x)}{a b\left(x-k_{1}\right)\left(x-k_{2}\right)\left(x-k_{3}\right)}
\end{aligned}
$$

Then we need to get common denominators, which is Like with Fractions
To keep the degrees of the polynomials as low as possible, we factor the denominators $D(x)$ and $E(x)$ to look for common factors.
For any factor missing from the one of the denominators, we need to multiply the top and bottom of the Rational by the missing factor.
Note: The factors may be constants or polynomials
With the common denominator, we can now add the fractions
We will likely need to distribute in the numerator to simplify

Adding Rationals - General

If we want to add two Rational Expressions:

$$
\begin{aligned}
& \frac{P(x)}{D(x)}+\frac{Q(x)}{E(x)}=\frac{P(x)}{a\left(x-k_{1}\right)\left(x-k_{2}\right)}+\frac{Q(x)}{b\left(x-k_{1}\right)\left(x-k_{3}\right)} \\
& \quad=\frac{b\left(x-k_{3}\right)}{b\left(x-k_{3}\right)} \cdot \frac{P(x)}{a\left(x-k_{1}\right)\left(x-k_{2}\right)}+\frac{Q(x)}{b\left(x-k_{1}\right)\left(x-k_{3}\right)} \cdot \frac{a\left(x-k_{2}\right)}{a\left(x-k_{2}\right)} \\
& \quad=\frac{b\left(x-k_{3}\right) P(x)+a\left(x-k_{2}\right) Q(x)}{a b\left(x-k_{1}\right)\left(x-k_{2}\right)\left(x-k_{3}\right)}
\end{aligned}
$$

Then we need to get common denominators, which is Like with Fractions
To keep the degrees of the polynomials as low as possible, we factor the denominators $D(x)$ and $E(x)$ to look for common factors.
For any factor missing from the one of the denominators, we need to multiply the top and bottom of the Rational by the missing factor.
Note: The factors may be constants or polynomials
With the common denominator, we can now add the fractions
We will likely need to distribute in the numerator to simplify
Factored Form is often useful, so we often leave the denominator as is

