Adding Rationals - Example 2

Adding Rationals - Example 2

Like with Fractions it is easy to add Rationals with the same denominator, but we have to work harder if the Rationals have different denominators.

Adding Rationals - Example 2

Like with Fractions it is easy to add Rationals with the same denominator, but we have to work harder if the Rationals have different denominators. Example:

Adding Rationals - Example 2

Like with Fractions it is easy to add Rationals with the same denominator, but we have to work harder if the Rationals have different denominators. Example:

$$
\frac{5 x}{x^{2}+3 x+2}+\frac{3}{x+1}=
$$

Adding Rationals - Example 2

Like with Fractions it is easy to add Rationals with the same denominator, but we have to work harder if the Rationals have different denominators. Example:

$$
\frac{5 x}{x^{2}+3 x+2}+\frac{3}{x+1}=
$$

We can get a common denominator by getting the same factors in both

Adding Rationals - Example 2

Like with Fractions it is easy to add Rationals with the same denominator, but we have to work harder if the Rationals have different denominators. Example:

$$
\frac{5 x}{x^{2}+3 x+2}+\frac{3}{(x+1)}=
$$

We can get a common denominator by getting the same factors in both The second Rational has a factor of $(x+1)$

Adding Rationals - Example 2

Like with Fractions it is easy to add Rationals with the same denominator, but we have to work harder if the Rationals have different denominators. Example:

$$
\frac{5 x}{x^{2}+3 x+2}+\frac{3}{(x+1)}=
$$

We can get a common denominator by getting the same factors in both The second Rational has a factor of $(x+1)$
What are the factors in $x^{2}+3 x+2$ from the first fraction?

Adding Rationals - Example 2

Like with Fractions it is easy to add Rationals with the same denominator, but we have to work harder if the Rationals have different denominators. Example:

$$
\frac{5 x}{x^{2}+3 x+2}+\frac{3}{(x+1)}=
$$

We can get a common denominator by getting the same factors in both The second Rational has a factor of $(x+1)$
What are the factors in $x^{2}+3 x+2$ from the first fraction?
To see this, we need to

```
> factor
```


Adding Rationals - Example 2

Like with Fractions it is easy to add Rationals with the same denominator, but we have to work harder if the Rationals have different denominators. Example:

$$
\frac{5 x}{x^{2}+3 x+2}+\frac{3}{(x+1)}=
$$

We can get a common denominator by getting the same factors in both The second Rational has a factor of $(x+1)$
What are the factors in $x^{2}+3 x+2$ from the first fraction?
To see this, we need to factor: $x^{2}+3 x+2=(x+1) \cdot(x+2)$

Adding Rationals - Example 2

Like with Fractions it is easy to add Rationals with the same denominator, but we have to work harder if the Rationals have different denominators. Example:

$$
\frac{5 x}{x^{2}+3 x+2}+\frac{3}{(x+1)}=\frac{5 x}{(x+1) \cdot(x+2)}+\frac{3}{(x+1)}
$$

We can get a common denominator by getting the same factors in both The second Rational has a factor of $(x+1)$
What are the factors in $x^{2}+3 x+2$ from the first fraction?
To see this, we need to factor: $x^{2}+3 x+2=(x+1) \cdot(x+2)$

Adding Rationals - Example 2

Like with Fractions it is easy to add Rationals with the same denominator, but we have to work harder if the Rationals have different denominators.

Example:

$$
\frac{5 x}{x^{2}+3 x+2}+\frac{3}{(x+1)}=\frac{5 x}{(x+1) \cdot(x+2)}+\frac{3}{(x+1)}
$$

We can get a common denominator by getting the same factors in both The second Rational has a factor of $(x+1)$
What are the factors in $x^{2}+3 x+2$ from the first fraction?
To see this, we need to factor: $x^{2}+3 x+2=(x+1) \cdot(x+2)$
From here, we see that both denominators have the factor $(x+1)$ but the second needs $(x+2)$. So we multiply top and bottom by $(x+2)$

Adding Rationals - Example 2

Like with Fractions it is easy to add Rationals with the same denominator, but we have to work harder if the Rationals have different denominators.

Example:

$$
\frac{5 x}{x^{2}+3 x+2}+\frac{3}{(x+1)}=\frac{5 x}{(x+1) \cdot(x+2)}+\frac{3}{(x+1)} \cdot \frac{(x+2)}{(x+2)}
$$

We can get a common denominator by getting the same factors in both The second Rational has a factor of $(x+1)$
What are the factors in $x^{2}+3 x+2$ from the first fraction?
To see this, we need to factor: $x^{2}+3 x+2=(x+1) \cdot(x+2)$
From here, we see that both denominators have the factor $(x+1)$ but the second needs $(x+2)$. So we multiply top and bottom by $(x+2)$

Adding Rationals - Example 2

Like with Fractions it is easy to add Rationals with the same denominator, but we have to work harder if the Rationals have different denominators. Example:

$$
\begin{aligned}
\frac{5 x}{x^{2}+3 x+2}+\frac{3}{(x+1)} & =\frac{5 x}{(x+1) \cdot(x+2)}+\frac{3}{(x+1)} \cdot \frac{(x+2)}{(x+2)} \\
& =\frac{5 x}{(x+1) \cdot(x+2)}+\frac{3 \cdot(x+2)}{(x+1)(x+2)}
\end{aligned}
$$

We can get a common denominator by getting the same factors in both The second Rational has a factor of $(x+1)$
What are the factors in $x^{2}+3 x+2$ from the first fraction?
To see this, we need to factor: $x^{2}+3 x+2=(x+1) \cdot(x+2)$
From here, we see that both denominators have the factor $(x+1)$ but the second needs $(x+2)$. So we multiply top and bottom by $(x+2)$

Adding Rationals - Example 2

Like with Fractions it is easy to add Rationals with the same denominator, but we have to work harder if the Rationals have different denominators. Example:

$$
\begin{aligned}
\frac{5 x}{x^{2}+3 x+2}+\frac{3}{(x+1)} & =\frac{5 x}{(x+1) \cdot(x+2)}+\frac{3}{(x+1)} \cdot \frac{(x+2)}{(x+2)} \\
& =\frac{5 x}{(x+1) \cdot(x+2)}+\frac{3 \cdot(x+2)}{(x+1)(x+2)}
\end{aligned}
$$

We can get a common denominator by getting the same factors in both The second Rational has a factor of $(x+1)$
What are the factors in $x^{2}+3 x+2$ from the first fraction?
To see this, we need to factor: $x^{2}+3 x+2=(x+1) \cdot(x+2)$
From here, we see that both denominators have the factor $(x+1)$ but the second needs $(x+2)$. So we multiply top and bottom by $(x+2)$ With the common denominator $(x+1)(x+2)$ we can now add them

Adding Rationals - Example 2

CLike with Fractions it is easy to add Rationals with the same denominator, but we have to work harder if the Rationals have different denominators.

Example:

$$
\begin{aligned}
\frac{5 x}{x^{2}+3 x+2}+\frac{3}{(x+1)} & =\frac{5 x}{(x+1) \cdot(x+2)}+\frac{3}{(x+1)} \cdot \frac{(x+2)}{(x+2)} \\
& =\frac{5 x}{(x+1) \cdot(x+2)}+\frac{3 \cdot(x+2)}{(x+1)(x+2)} \\
& =\frac{5 x+3 \cdot(x+2)}{(x+1) \cdot(x+2)}
\end{aligned}
$$

We can get a common denominator by getting the same factors in both
The second Rational has a factor of $(x+1)$
What are the factors in $x^{2}+3 x+2$ from the first fraction?
To see this, we need to factor: $x^{2}+3 x+2=(x+1) \cdot(x+2)$
From here, we see that both denominators have the factor $(x+1)$ but the second needs $(x+2)$. So we multiply top and bottom by $(x+2)$ With the common denominator $(x+1)(x+2)$ we can now add them

Adding Rationals - Example 2

CLike with Fractions it is easy to add Rationals with the same denominator, but we have to work harder if the Rationals have different denominators.

Example:

$$
\begin{aligned}
\frac{5 x}{x^{2}+3 x+2}+\frac{3}{(x+1)} & =\frac{5 x}{(x+1) \cdot(x+2)}+\frac{3}{(x+1)} \cdot \frac{(x+2)}{(x+2)} \\
& =\frac{5 x}{(x+1) \cdot(x+2)}+\frac{3 \cdot(x+2)}{(x+1)(x+2)} \\
& =\frac{5 x+3 \cdot(x+2)}{(x+1) \cdot(x+2)}=\frac{8 x+6}{(x+1) \cdot(x+2)}
\end{aligned}
$$

We can get a common denominator by getting the same factors in both
The second Rational has a factor of $(x+1)$
What are the factors in $x^{2}+3 x+2$ from the first fraction?
To see this, we need to factor: $x^{2}+3 x+2=(x+1) \cdot(x+2)$
From here, we see that both denominators have the factor $(x+1)$ but the second needs $(x+2)$. So we multiply top and bottom by $(x+2)$ With the common denominator $(x+1)(x+2)$ we can now add them

Adding Rationals - Example 2

CLike with Fractions it is easy to add Rationals with the same denominator, but we have to work harder if the Rationals have different denominators.

Example:

$$
\begin{aligned}
\frac{5 x}{x^{2}+3 x+2}+\frac{3}{(x+1)} & =\frac{5 x}{(x+1) \cdot(x+2)}+\frac{3}{(x+1)} \cdot \frac{(x+2)}{(x+2)} \\
& =\frac{5 x}{(x+1) \cdot(x+2)}+\frac{3 \cdot(x+2)}{(x+1)(x+2)} \\
& =\frac{5 x+3 \cdot(x+2)}{(x+1) \cdot(x+2)}=\frac{8 x+6}{(x+1) \cdot(x+2)}
\end{aligned}
$$

We can get a common denominator by getting the same factors in both
The second Rational has a factor of $(x+1)$
What are the factors in $x^{2}+3 x+2$ from the first fraction?
To see this, we need to factor: $x^{2}+3 x+2=(x+1) \cdot(x+2)$
From here, we see that both denominators have the factor $(x+1)$ but the second needs $(x+2)$. So we multiply top and bottom by $(x+2)$ With the common denominator $(x+1)(x+2)$ we can now add them Note: Factored form is useful, so we will leave the denominator as is

