Adding Rationals - Example 1

Adding Rationals - Example 1

Like with Fractions it is easy to add Rationals with the same denominator:

Adding Rationals - Example 1

Like with Fractions it is easy to add Rationals with the same denominator:

Example:

Adding Rationals - Example 1

Like with Fractions it is easy to add Rationals with the same denominator:

Example:

$$
\frac{2}{x+1}+\frac{3}{x+1}=
$$

Adding Rationals - Example 1

Like with Fractions it is easy to add Rationals with the same denominator:

Example:

$$
\frac{2}{x+1}+\frac{3}{x+1}=
$$

We simply add the numerators, over the common denominator.

Adding Rationals - Example 1

Like with Fractions it is easy to add Rationals with the same denominator:

Example:

$$
\frac{2}{x+1}+\frac{3}{x+1}=\frac{2+3}{x+1}
$$

We simply add the numerators, over the common denominator.

Adding Rationals - Example 1

Like with Fractions it is easy to add Rationals with the same denominator:

Example:

$$
\frac{2}{x+1}+\frac{3}{x+1}=\frac{2+3}{x+1}=\frac{5}{x+1}
$$

We simply add the numerators, over the common denominator.

Adding Rationals - Example 1

Like with Fractions it is easy to add Rationals with the same denominator:

Example:

$$
\frac{2}{x+1}+\frac{3}{x+1}=\frac{2+3}{x+1}=\frac{5}{x+1}
$$

We simply add the numerators, over the common denominator.
If the Rationals we add have different denominators, we need to do more

Adding Rationals - Example 1

Like with Fractions it is easy to add Rationals with the same denominator:

Example:

$$
\frac{2}{x+1}+\frac{3}{x+1}=\frac{2+3}{x+1}=\frac{5}{x+1}
$$

We simply add the numerators, over the common denominator.
If the Rationals we add have different denominators, we need to do more

$$
\frac{2}{x+1}+\frac{3}{x+2}=
$$

Adding Rationals - Example 1

Like with Fractions it is easy to add Rationals with the same denominator:

Example:

$$
\frac{2}{x+1}+\frac{3}{x+1}=\frac{2+3}{x+1}=\frac{5}{x+1}
$$

We simply add the numerators, over the common denominator.
If the Rationals we add have different denominators, we need to do more We can get a common denominator by getting the same factors in both

$$
\frac{2}{x+1}+\frac{3}{x+2}=
$$

Adding Rationals - Example 1

Like with Fractions it is easy to add Rationals with the same denominator:

Example:

$$
\frac{2}{x+1}+\frac{3}{x+1}=\frac{2+3}{x+1}=\frac{5}{x+1}
$$

We simply add the numerators, over the common denominator.
If the Rationals we add have different denominators, we need to do more We can get a common denominator by getting the same factors in both So we multiply the first Rational by $\frac{x+2}{x+2}=1$ and the second by $\frac{x+1}{x+1}=1$

$$
\frac{2}{x+1}+\frac{3}{x+2}=
$$

Adding Rationals - Example 1

Like with Fractions it is easy to add Rationals with the same denominator:

Example:

$$
\frac{2}{x+1}+\frac{3}{x+1}=\frac{2+3}{x+1}=\frac{5}{x+1}
$$

We simply add the numerators, over the common denominator.
If the Rationals we add have different denominators, we need to do more
We can get a common denominator by getting the same factors in both So we multiply the first Rational by $\frac{x+2}{x+2}=1$ and the second by $\frac{x+1}{x+1}=1$

$$
\frac{2}{x+1}+\frac{3}{x+2}=\frac{x+2}{x+2} \cdot \frac{2}{x+1}+\frac{3}{x+2} \cdot \frac{x+1}{x+1}
$$

Adding Rationals - Example 1

Like with Fractions it is easy to add Rationals with the same denominator:

Example:

$$
\frac{2}{x+1}+\frac{3}{x+1}=\frac{2+3}{x+1}=\frac{5}{x+1}
$$

We simply add the numerators, over the common denominator.
If the Rationals we add have different denominators, we need to do more
We can get a common denominator by getting the same factors in both So we multiply the first Rational by $\frac{x+2}{x+2}=1$ and the second by $\frac{x+1}{x+1}=1$
With a common denominator $(x+1)(x+2)$ we can add

$$
\frac{2}{x+1}+\frac{3}{x+2}=\frac{x+2}{x+2} \cdot \frac{2}{x+1}+\frac{3}{x+2} \cdot \frac{x+1}{x+1}
$$

Adding Rationals - Example 1

Like with Fractions it is easy to add Rationals with the same denominator:

Example:

$$
\frac{2}{x+1}+\frac{3}{x+1}=\frac{2+3}{x+1}=\frac{5}{x+1}
$$

We simply add the numerators, over the common denominator.
If the Rationals we add have different denominators, we need to do more
We can get a common denominator by getting the same factors in both So we multiply the first Rational by $\frac{x+2}{x+2}=1$ and the second by $\frac{x+1}{x+1}=1$
With a common denominator $(x+1)(x+2)$ we can add

$$
\begin{aligned}
\frac{2}{x+1}+\frac{3}{x+2} & =\frac{x+2}{x+2} \cdot \frac{2}{x+1}+\frac{3}{x+2} \cdot \frac{x+1}{x+1} \\
& =\frac{(x+2) \cdot 2+3 \cdot(x+1)}{(x+1)(x+2)}
\end{aligned}
$$

Adding Rationals - Example 1

Like with Fractions it is easy to add Rationals with the same denominator:

Example:

$$
\frac{2}{x+1}+\frac{3}{x+1}=\frac{2+3}{x+1}=\frac{5}{x+1}
$$

We simply add the numerators, over the common denominator.
If the Rationals we add have different denominators, we need to do more
We can get a common denominator by getting the same factors in both So we multiply the first Rational by $\frac{x+2}{x+2}=1$ and the second by $\frac{x+1}{x+1}=1$
With a common denominator $(x+1)(x+2)$ we can add
We can clean up the top by distributing

$$
\begin{aligned}
\frac{2}{x+1}+\frac{3}{x+2} & =\frac{x+2}{x+2} \cdot \frac{2}{x+1}+\frac{3}{x+2} \cdot \frac{x+1}{x+1} \\
& =\frac{(x+2) \cdot 2+3 \cdot(x+1)}{(x+1)(x+2)}
\end{aligned}
$$

Adding Rationals - Example 1

CLike with Fractions it is easy to add Rationals with the same denominator:
Example:

$$
\frac{2}{x+1}+\frac{3}{x+1}=\frac{2+3}{x+1}=\frac{5}{x+1}
$$

We simply add the numerators, over the common denominator.
If the Rationals we add have different denominators, we need to do more We can get a common denominator by getting the same factors in both So we multiply the first Rational by $\frac{x+2}{x+2}=1$ and the second by $\frac{x+1}{x+1}=1$
With a common denominator $(x+1)(x+2)$ we can add
We can clean up the top by distributing

$$
\begin{aligned}
\frac{2}{x+1}+\frac{3}{x+2} & =\frac{x+2}{x+2} \cdot \frac{2}{x+1}+\frac{3}{x+2} \cdot \frac{x+1}{x+1} \\
& =\frac{(x+2) \cdot 2+3 \cdot(x+1)}{(x+1)(x+2)} \\
& =\frac{2 x+4+3 x+3}{(x+1)(x+2)}
\end{aligned}
$$

Adding Rationals - Example 1

Like with Fractions it is easy to add Rationals with the same denominator:
Example:

$$
\frac{2}{x+1}+\frac{3}{x+1}=\frac{2+3}{x+1}=\frac{5}{x+1}
$$

We simply add the numerators, over the common denominator.
If the Rationals we add have different denominators, we need to do more We can get a common denominator by getting the same factors in both So we multiply the first Rational by $\frac{x+2}{x+2}=1$ and the second by $\frac{x+1}{x+1}=1$
With a common denominator $(x+1)(x+2)$ we can add
We can clean up the top by distributing

$$
\begin{aligned}
\frac{2}{x+1}+\frac{3}{x+2} & =\frac{x+2}{x+2} \cdot \frac{2}{x+1}+\frac{3}{x+2} \cdot \frac{x+1}{x+1} \\
& =\frac{(x+2) \cdot 2+3 \cdot(x+1)}{(x+1)(x+2)} \\
& =\frac{2 x+4+3 x+3}{(x+1)(x+2)}=\frac{5 x+7}{(x+1)(x+2)}
\end{aligned}
$$

Adding Rationals - Example 1

Like with Fractions it is easy to add Rationals with the same denominator:
Example:

$$
\frac{2}{x+1}+\frac{3}{x+1}=\frac{2+3}{x+1}=\frac{5}{x+1}
$$

We simply add the numerators, over the common denominator.
If the Rationals we add have different denominators, we need to do more We can get a common denominator by getting the same factors in both So we multiply the first Rational by $\frac{x+2}{x+2}=1$ and the second by $\frac{x+1}{x+1}=1$
With a common denominator $(x+1)(x+2)$ we can add
We can clean up the top by distributing

$$
\begin{aligned}
\frac{2}{x+1}+\frac{3}{x+2} & =\frac{x+2}{x+2} \cdot \frac{2}{x+1}+\frac{3}{x+2} \cdot \frac{x+1}{x+1} \\
& =\frac{(x+2) \cdot 2+3 \cdot(x+1)}{(x+1)(x+2)} \\
& =\frac{2 x+4+3 x+3}{(x+1)(x+2)}=\frac{5 x+7}{(x+1)(x+2)}
\end{aligned}
$$

Note: Factored form is useful, so we will leave the denominator as is

