Introduction to Rational Functions

Introduction to Rational Functions

When we were learning about Polynomials we learned how to Add, Subtract, Multiply, and Divide Polynomials.

Introduction to Rational Functions

When we were learning about Polynomials we learned how to Add, Subtract, Multiply, and Divide Polynomials.
In the case of Adding, subtracting, and Multipling Polynomials, the result was another Polynomial.

Introduction to Rational Functions

When we were learning about Polynomials we learned how to Add, Subtract, Multiply, and Divide Polynomials.
In the case of Adding, Subtracting, and Multiplying Polynomials, the result was another Polynomial.
However, when we Divided two polynomials $\frac{P(x)}{D(x)}$ we could not always reduce this to another Polynomial.

Introduction to Rational Functions

When we were learning about Polynomials we learned how to Add, Subtract, Multiply, and Divide Polynomials.
In the case of Adding, Subtracting, and Multipling Polynomials, the result was another Polynomial.
However, when we Divided two polynomials $\frac{P(x)}{D(x)}$ we could not always reduce this to another Polynomial.
We get a new type of function:

Introduction to Rational Functions

When we were learning about Polynomials we learned how to Add, Subtract, Multiply, and Divide Polynomials.
In the case of Adding, Subtracting, and Multipling Polynomials, the result was another Polynomial.
However, when we Divided two polynomials $\frac{P(x)}{D(x)}$ we could not always reduce this to another Polynomial.
We get a new type of function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Introduction to Rational Functions

When we were learning about Polynomials we learned how to Add, Subtract, Multiply, and Divide Polynomials.
In the case of Adding, Subtracting, and Multipling Polynomials, the result was another Polynomial.
However, when we Divided two polynomials $\frac{P(x)}{D(x)}$ we could not always reduce this to another Polynomial.
We get a new type of function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

This new type of function is called a Rational Function.

Introduction to Rational Functions

When we were learning about Polynomials we learned how to Add, Subtract, Multiply, and Divide Polynomials.
In the case of Adding, Subtracting, and Multipling Polynomials, the result was another Polynomial.
However, when we Divided two polynomials $\frac{P(x)}{D(x)}$ we could not always reduce this to another Polynomial.
We get a new type of function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

This new type of function is called a Rational Function.
It is important to point out that because we can't divide by 0 , our function is undefined for x-values where $D(x)=0$

Introduction to Rational Functions

When we were learning about Polynomials we learned how to Add, Subtract, Multiply, and Divide Polynomials.
In the case of Adding, Subtracting, and Multipling Polynomials, the result was another Polynomial.
However, when we Divided two polynomials $\frac{P(x)}{D(x)}$ we could not always reduce this to another Polynomial.
We get a new type of function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

This new type of function is called a Rational Function.
It is important to point out that because we can't divide by 0 , our function is undefined for x-values where $D(x)=0$
In other words, the domain of $f(x)$ are the x-values so that: $D(x) \neq 0$

Introduction to Rational Functions

When we were learning about Polynomials we learned how to Add, Subtract, Multiply, and Divide Polynomials.
In the case of Adding, Subtracting, and Multipling Polynomials, the result was another Polynomial.
However, when we Divided two polynomials $\frac{P(x)}{D(x)}$ we could not always reduce this to another Polynomial.
We get a new type of function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

This new type of function is called a Rational Function.
It is important to point out that because we can't divide by 0 , our function is undefined for x-values where $D(x)=0$
In other words, the domain of $f(x)$ are the x-values so that: $D(x) \neq 0$ Note: Our work in finding zeros of polynomials using the Quadratic Formula and Rational Root Theorem will be used to find when $D(x)=0$

