Solving the quadratic equation: $x^2 + x - 2 = 0$: Recall: The • Quadratic Formula says r_1 and r_2 are • the roots of: $ax^2 + bx + c = 0$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(1) \pm \sqrt{(1)^2 - 4 \cdot 1 \cdot -2}}{2 \cdot 1}$

Recall: The Quadratic Formula says r_1 and r_2 are the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(1) \pm \sqrt{(1)^2 - 4 \cdot 1 \cdot -2}}{2 \cdot 1}$ $= \frac{-1 \pm \sqrt{1+8}}{2}$

Solving the quadratic equation: $x^2 + x - 2 = 0$: Recall: The • Quadratic Formula says r_1 and r_2 are • the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$

$$r_{1,2} = \frac{-(1) \pm \sqrt{(1)^2 - 4 \cdot 1 \cdot -2}}{2 \cdot 1}$$
$$= \frac{-1 \pm \sqrt{1+8}}{2}$$
$$= \frac{-1 \pm \sqrt{9}}{2}$$

Solving the quadratic equation: $x^2 + x - 2 = 0$: Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^{2} + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(1) \pm \sqrt{(1)^2 - 4 \cdot 1} \cdot -2}{2 \cdot 1}$ $=\frac{-1\pm\sqrt{1+8}}{2}$ $=rac{-1\pm\sqrt{9}}{2}$

 $=\frac{-1\pm 3}{2}$

Solving the quadratic equation: $x^2 + x - 2 = 0$: Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^{2} + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(1) \pm \sqrt{(1)^2 - 4 \cdot 1 \cdot -2}}{2 \cdot 1}$ $=\frac{-1\pm\sqrt{1+8}}{2}$ $=\frac{-1\pm\sqrt{9}}{2}$ $=\frac{-1\pm 3}{2}$ $=\frac{2}{2}$ and $\frac{-4}{2}$

Solving the quadratic equation: $x^2 + x - 2 = 0$: Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^{2} + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(1) \pm \sqrt{(1)^2 - 4 \cdot 1 \cdot -2}}{2 \cdot 1}$ $=\frac{-1\pm\sqrt{1+8}}{2}$ $=\frac{-1\pm\sqrt{9}}{2}$ $=\frac{-1\pm 3}{2}$ $=\frac{2}{2}$ and $\frac{-4}{2}$ = 1 and -2

Solving the quadratic equation: $x^2 + x - 2 = 0$: Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^{2} + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(1) \pm \sqrt{(1)^2 - 4 \cdot 1 \cdot -2}}{2 \cdot 1}$ $=\frac{-1\pm\sqrt{1+8}}{2}$ $=\frac{-1\pm\sqrt{9}}{2}$ $=\frac{-1\pm 3}{2}$ $=\frac{2}{2}$ and $\frac{-4}{2}$ = 1 and -2The solutions to $x^2 + x - 2 = 0$ are: $x = r_{1,2} = 1, -2$