Graphing Rational Functions - Vertical Asymptotes Ex

Graphing Rational Functions - Vertical Asymptotes Ex

- We found that a vertical asymptote of:

$$
f(x)=\frac{P(x)}{D(x)}
$$

is a value $x=a$ so that $D(a)=0$ and $P(a) \neq 0$

Graphing Rational Functions - Vertical Asymptotes Ex

- We found that a vertical asymptote of:

$$
f(x)=\frac{P(x)}{D(x)}
$$

is a value $x=a$ so that $D(a)=0$ and $P(a) \neq 0$
Example: Find the vertical asymptote(s) of:

$$
f(x)=\frac{x-2}{x^{2}+x-2}
$$

Graphing Rational Functions - Vertical Asymptotes Ex

- We found that a vertical asymptote of:

$$
f(x)=\frac{P(x)}{D(x)}
$$

is a value $x=a$ so that $D(a)=0$ and $P(a) \neq 0$
Example: Find the vertical asymptote(s) of:

$$
f(x)=\frac{x-2}{x^{2}+x-2}
$$

To find the vertical asymptote(s) we need to find when

$$
D(x)=x^{2}+x-2=0
$$

Graphing Rational Functions - Vertical Asymptotes Ex

- We found that a vertical asymptote of:

$$
f(x)=\frac{P(x)}{D(x)}
$$

is a value $x=a$ so that $D(a)=0$ and $P(a) \neq 0$
Example: Find the vertical asymptote(s) of:

$$
f(x)=\frac{x-2}{x^{2}+x-2}
$$

To find the vertical asymptote(s) we need to find when

$$
D(x)=x^{2}+x-2=0
$$

- We can solve this using the Quadratic Formula to get:

Graphing Rational Functions - Vertical Asymptotes Ex

- We found that a vertical asymptote of:

$$
f(x)=\frac{P(x)}{D(x)}
$$

is a value $x=a$ so that $D(a)=0$ and $P(a) \neq 0$
Example: Find the vertical asymptote(s) of:

$$
f(x)=\frac{x-2}{x^{2}+x-2}
$$

To find the vertical asymptote(s) we need to find when

$$
D(x)=x^{2}+x-2=0
$$

- We can solve this using the Quadratic Formula to get: $x=1,-2$

Graphing Rational Functions - Vertical Asymptotes Ex

- We found that a vertical asymptote of:

$$
f(x)=\frac{P(x)}{D(x)}
$$

is a value $x=a$ so that $D(a)=0$ and $P(a) \neq 0$
Example: Find the vertical asymptote(s) of:

$$
f(x)=\frac{x-2}{x^{2}+x-2}
$$

To find the vertical asymptote(s) we need to find when

$$
D(x)=x^{2}+x-2=0
$$

We can solve this using the Quadratic Formula to get: $x=1,-2$
So, $D(1)=0$ and $D(-2)=0$

Graphing Rational Functions - Vertical Asymptotes Ex

- We found that a vertical asymptote of:

$$
f(x)=\frac{P(x)}{D(x)}
$$

is a value $x=a$ so that $D(a)=0$ and $P(a) \neq 0$
Example: Find the vertical asymptote(s) of:

$$
f(x)=\frac{x-2}{x^{2}+x-2}
$$

To find the vertical asymptote(s) we need to find when

$$
D(x)=x^{2}+x-2=0
$$

We can solve this using the Quadratic Formula to get: $x=1,-2$
So, $D(1)=0$ and $D(-2)=0$
Since $P(1)=-1 \neq 0$ and $P(-2)=-4 \neq 0$, we can conclude:

Graphing Rational Functions - Vertical Asymptotes Ex

- We found that a vertical asymptote of:

$$
f(x)=\frac{P(x)}{D(x)}
$$

is a value $x=a$ so that $D(a)=0$ and $P(a) \neq 0$
Example: Find the vertical asymptote(s) of:

$$
f(x)=\frac{x-2}{x^{2}+x-2}
$$

To find the vertical asymptote(s) we need to find when

$$
D(x)=x^{2}+x-2=0
$$

We can solve this using the Quadratic Formula to get: $x=1,-2$
So, $D(1)=0$ and $D(-2)=0$
Since $P(1)=-1 \neq 0$ and $P(-2)=-4 \neq 0$, we can conclude:
$x=1$ and $x=-2$ are the vertical asymptotes of $f(x)=\frac{x-2}{x^{2}+x-2}$

