Graphing Rational Functions - General

Graphing Rational Functions - General

- We have seen how to sketch the basic graph $f(x)=\frac{1}{x}$

Graphing Rational Functions - General

- We have seen how to sketch the basic graph $f(x)=\frac{1}{x}$

Using Graph Shifing we sketched the graph of $f(x)=\frac{1}{x-1}$

Graphing Rational Functions - General

- We have seen how to sketch the basic graph $f(x)=\frac{1}{x}$
- Using Graph Shifting we sketched the graph of $f(x)=\frac{1}{x-1}$

How do we sketch the graph of a Rational Function in general?

$$
f(x)=\frac{P(x)}{D(x)}
$$

Graphing Rational Functions - General

- We have seen how to sketch the basic graph $f(x)=\frac{1}{x}$
- Using Graph Shifting we sketched the graph of $f(x)=\frac{1}{x-1}$ How do we sketch the graph of a Rational Function in general?

$$
f(x)=\frac{P(x)}{D(x)}
$$

C We saw that if $D(a)=0$ and $P(a) \neq 0$ then $f(x)$ has a vertical asymptote at $x=a$

Graphing Rational Functions - General

- We have seen how to sketch the basic graph $f(x)=\frac{1}{x}$
-Using Graph Shifting we sketched the graph of $f(x)=\frac{1}{x-1}$ How do we sketch the graph of a Rational Function in general?

$$
f(x)=\frac{P(x)}{D(x)}
$$

C We saw that if $D(a)=0$ and $P(a) \neq 0$ then $f(x)$ has a vertical asymptote at $x=a$
Furthermore, we saw that $f(x) \rightarrow \pm \infty$ as x gets near a

Graphing Rational Functions - General

- We have seen how to sketch the basic graph $f(x)=\frac{1}{x}$

Using Graph Shifting we sketched the graph of $f(x)=\frac{1}{x-1}$ How do we sketch the graph of a Rational Function in general?

$$
f(x)=\frac{P(x)}{D(x)}
$$

CWe saw that if $D(a)=0$ and $P(a) \neq 0$ then $f(x)$ has a vertical asymptote at $x=a$
Furthermore, we saw that $f(x) \rightarrow \pm \infty$ as x gets near a
Like, with all of our functions so far, the x - and y-intercepts will play important roles in our graph.

Graphing Rational Functions - General

- We have seen how to sketch the basic graph $f(x)=\frac{1}{x}$

Using Graph shifting we sketched the graph of $f(x)=\frac{1}{x-1}$ How do we sketch the graph of a Rational Function in general?

$$
f(x)=\frac{P(x)}{D(x)}
$$

CWe saw that if $D(a)=0$ and $P(a) \neq 0$ then $f(x)$ has a vertical asymptote at $x=a$
Furthermore, we saw that $f(x) \rightarrow \pm \infty$ as x gets near a
Like, with all of our functions so far, the x - and y-intercepts will play important roles in our graph.
As with polynomials, we will always want to understand the End Behavior of our graph.

Graphing Rational Functions - General

- We have seen how to sketch the basic graph $f(x)=\frac{1}{x}$

Using Graph Shifiting we sketched the graph of $f(x)=\frac{1}{x-1}$ How do we sketch the graph of a Rational Function in general?

$$
f(x)=\frac{P(x)}{D(x)}
$$

CWe saw that if $D(a)=0$ and $P(a) \neq 0$ then $f(x)$ has a vertical asymptote at $x=a$
Furthermore, we saw that $f(x) \rightarrow \pm \infty$ as x gets near a
Like, with all of our functions so far, the x - and y-intercepts will play important roles in our graph.
As with polynomials, we will always want to understand the End Behavior of our graph.
Recall: The End Behavior is what happens to $f(x)$ as $x \rightarrow \pm \infty$ goes off the left and right hand sides of the graph.

Graphing Rational Functions - General

Graphing Rational Functions - General

To graph a Rational Function:

$$
f(x)=\begin{aligned}
& \frac{P(x)}{D(x)} \\
& \hline \\
& \hline \\
& \hline \\
& \hline
\end{aligned}
$$

We need to find:

Graphing Rational Functions - General

To graph a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Graphing Rational Functions - General

To graph a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to find:
The y-int

The x-int

Graphing Rational Functions - General

To graph a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to find:
The y-int

The x-int

Vertical asymptotes

Graphing Rational Functions - General

To graph a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to find:
The y-int

The x-int

Vertical asymptotes

The End Behavior

Graphing Rational Functions - General

To graph a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to find:
The y-int: $x=0$

The x-int

Vertical asymptotes

The End Behavior

Graphing Rational Functions - General

To graph a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to find:
The y-int: $x=0$
$y=f(0) \rightarrow(0, f(0))$
The x-int

Vertical asymptotes

The End Behavior

Graphing Rational Functions - General

To graph a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to find:
The y-int: $x=0$
$y=f(0) \rightarrow(0, f(0))$
The x-int

Vertical asymptotes

The End Behavior

Graphing Rational Functions - General

To graph a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to find:
The y-int: $x=0$
$y=f(0) \rightarrow(0, f(0))$
The x-int: $y=f(x)=0$

Vertical asymptotes

The End Behavior

Graphing Rational Functions - General

To graph a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to find:
The y-int: $x=0$
$y=f(0) \rightarrow(0, f(0))$
The x-int: $y=f(x)=0$
We need to solve $0=\frac{P(x)}{D(x)}$

Vertical asymptotes

The End Behavior

Graphing Rational Functions - General

To graph a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to find:
The y-int: $x=0$
$y=f(0) \rightarrow(0, f(0))$
The x-int: $y=f(x)=0$
We need to solve $0=\frac{P(x)}{D(x)}$
We can by solving: $0=P(x)$

Vertical asymptotes

The End Behavior

Graphing Rational Functions - General

To graph a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to find:
The y-int: $x=0$
$y=f(0) \rightarrow(0, f(0))$
The x-int: $y=f(x)=0$
We need to solve $0=\frac{P(x)}{D(x)}$
We can by solving: $0=P(x)$
This gives: $x=k_{1}, k_{2}$,etc \ldots
Vertical asymptotes

The End Behavior

Graphing Rational Functions - General

To graph a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to find:
The y-int: $x=0$
$y=f(0) \rightarrow(0, f(0))$
The x-int: $y=f(x)=0$
We need to solve $0=\frac{P(x)}{D(x)}$
We can by solving: $0=P(x)$
This gives: $x=k_{1}, k_{2}$,etc \ldots
($k_{1}, 0$), $\left(k_{2}, 0\right)$, etc...
Vertical asymptotes

The End Behavior

Graphing Rational Functions - General

To graph a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to find:
The
$y=f(0) \rightarrow(0, f(0))$
The x-int: $y=f(x)=0$
We need to solve $0=\frac{P(x)}{D(x)}$
We can by solving: $0=P(x)$
This gives: $x=k_{1}, k_{2}, e t c \ldots$
($k_{1}, 0$), $\left(k_{2}, 0\right)$, etc...
Vertical asymptotes

The End Behavior

Graphing Rational Functions - General

To graph a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to find:
The
$y=f(0) \rightarrow(0, f(0))$
The x-int: $y=f(x)=0$
We need to solve $0=\frac{P(x)}{D(x)}$
We can by solving: $0=P(x)$
This gives: $x=k_{1}, k_{2}$, etc \ldots $\left(k_{1}, 0\right),\left(k_{2}, 0\right)$, etc...
Vertical asymptotes: $D(x)=0$

The End Behavior

Graphing Rational Functions - General

To graph a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to find:
The
$y=f(0) \rightarrow(0, f(0))$
The x-int: $y=f(x)=0$
We need to solve $0=\frac{P(x)}{D(x)}$
We can by solving: $0=P(x)$
This gives: $x=k_{1}, k_{2}$, etc \ldots $\left(k_{1}, 0\right),\left(k_{2}, 0\right)$, etc...
Vertical asymptotes: $D(x)=0$

Solving this polynomial gives: $x=v_{1}, x=v_{2}$, etc \ldots The End Behavior

Graphing Rational Functions - General

To graph a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to find:
The
$y=f(0) \rightarrow(0, f(0))$
The x-int: $y=f(x)=0$
We need to solve $0=\frac{P(x)}{D(x)}$
We can by solving: $0=P(x)$ This gives: $x=k_{1}, k_{2}$, etc \ldots $\left(k_{1}, 0\right),\left(k_{2}, 0\right)$, etc...
Vertical asymptotes: $D(x)=0$

Solving this polynomial gives: $x=v_{1}, x=v_{2}$, etc \ldots The End Behavior

Graphing Rational Functions - General

To graph a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to find:
The
$y=f(0) \rightarrow(0, f(0))$
The x-int: $y=f(x)=0$
We need to solve $0=\frac{P(x)}{D(x)}$
We can by solving: $0=P(x)$
This gives: $x=k_{1}, k_{2}$, etc \ldots $\left(k_{1}, 0\right),\left(k_{2}, 0\right)$, etc...
Vertical asymptotes: $D(x)=0$

Solving this polynomial gives: $x=v_{1}, x=v_{2}$, etc \ldots
The End Behavior: $x \rightarrow \pm \infty$

Graphing Rational Functions - General

To graph a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to find:
The
$y=f(0) \rightarrow(0, f(0))$
The x-int: $y=f(x)=0$
We need to solve $0=\frac{P(x)}{D(x)}$
We can by solving: $0=P(x)$
This gives: $x=k_{1}, k_{2}$, etc \ldots $\left(k_{1}, 0\right),\left(k_{2}, 0\right)$, etc...
Vertical asymptotes: $D(x)=0$

Solving this polynomial gives: $x=v_{1}, x=v_{2}$, etc \ldots
The End Behavior: $x \rightarrow \pm \infty$

Graphing Rational Functions - General

To graph a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to find:
The
$y=f(0) \rightarrow(0, f(0))$
The x-int: $y=f(x)=0$
We need to solve $0=\frac{P(x)}{D(x)}$
We can by solving: $0=P(x)$
This gives: $x=k_{1}, k_{2}$, etc \ldots $\left(k_{1}, 0\right),\left(k_{2}, 0\right)$, etc...
Vertical asymptotes: $D(x)=0$

Solving this polynomial gives: $x=v_{1}, x=v_{2}$, etc \ldots
The End Behavior: $x \rightarrow \pm \infty$
You can see a more extensive lecture of End Behavior for Rationals here

Graphing Rational Functions - General

To graph a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to find:
The
$y=f(0) \rightarrow(0, f(0))$
The x-int: $y=f(x)=0$
We need to solve $0=\frac{P(x)}{D(x)}$
We can by solving: $0=P(x)$
This gives: $x=k_{1}, k_{2}$, etc \ldots $\left(k_{1}, 0\right),\left(k_{2}, 0\right)$, etc...
Vertical asymptotes: $D(x)=0$

Solving this polynomial gives: $x=v_{1}, x=v_{2}$, etc \ldots The End Behavior: $x \rightarrow \pm \infty$

You can see a more extensive lecture of End Behavior for Rationals here

Graphing Rational Functions - General

To graph a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to find:
The y-int: $x=0$
$y=f(0) \rightarrow(0, f(0))$
The x-int: $y=f(x)=0$
We need to solve $0=\frac{P(x)}{D(x)}$
We can by solving: $0=P(x)$
This gives: $x=k_{1}, k_{2}$, etc \ldots
$\left(k_{1}, 0\right),\left(k_{2}, 0\right)$, etc...
Vertical asymptotes: $D(x)=0$

Solving this polynomial gives: $x=v_{1}, x=v_{2}$, etc \ldots
The End Behavior: $x \rightarrow \pm \infty$
You can see a more extensive lecture of End Behavior for Rationals here
Like Polynomials we need to check if $f(x)>0$ or $f(x)<0$ on some intervals

Graphing Rational Functions - General

To graph a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to find:
The
$y=f(0) \rightarrow(0, f(0))$
The x-int: $y=f(x)=0$
We need to solve $0=\frac{P(x)}{D(x)}$
We can by solving: $0=P(x)$
This gives: $x=k_{1}, k_{2}$, etc \ldots
$\left(k_{1}, 0\right),\left(k_{2}, 0\right)$, etc...
Vertical asymptotes: $D(x)=0$

Solving this polynomial gives: $x=v_{1}, x=v_{2}$, etc \ldots The End Behavior: $x \rightarrow \pm \infty$

- You can see a more extensive lecture of End Behavior for Rationals here

Like Polynomials we need to check if $f(x)>0$ or $f(x)<0$ on some intervals Since there are no more x-int we know where $f(x)$ can change sign

