Graphing Rational Functions - Example 8

Graphing Rational Functions - Example 8

- We found that a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Has a vertical asymptote at $x=a$ if $D(a)=0$ and $P(a) \neq 0$

Graphing Rational Functions - Example 8

- We found that a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Has a vertical asymptote at $x=a$ if $D(a)=0$ and $P(a) \neq 0$ But what happens if $P(a)=0$ AND $D(a)=0$ for the same a ?

Graphing Rational Functions - Example 8

- We found that a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Has a vertical asymptote at $x=a$ if $D(a)=0$ and $P(a) \neq 0$ But what happens if $P(a)=0$ AND $D(a)=0$ for the same a ?
By the Factoring Theorem since D and P are polynomials, we know $(x-a)$ is a factor of D and P

Graphing Rational Functions - Example 8

- We found that a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Has a vertical asymptote at $x=a$ if $D(a)=0$ and $P(a) \neq 0$ But what happens if $P(a)=0$ AND $D(a)=0$ for the same a ?
By the Factoing Theorem since D and P are polynomials, we know $(x-a)$ is a factor of D and P
For example:

$$
f(x)=\frac{P(x)}{D(x)}=\frac{(x+1)(x+2)}{(x+1)}
$$

Graphing Rational Functions - Example 8

- We found that a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Has a vertical asymptote at $x=a$ if $D(a)=0$ and $P(a) \neq 0$ But what happens if $P(a)=0$ AND $D(a)=0$ for the same a ?
By the Factoring Theorem since D and P are polynomials, we know $(x-a)$ is a factor of D and P
For example:

$$
f(x)=\frac{P(x)}{D(x)}=\frac{(x+1)(x+2)}{(x+1)}
$$

$x=-1$ is a zero of both D and P

Graphing Rational Functions - Example 8

- We found that a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Has a vertical asymptote at $x=a$ if $D(a)=0$ and $P(a) \neq 0$
But what happens if $P(a)=0$ AND $D(a)=0$ for the same a ?
By the Factoing Theorem since D and P are polynomials, we know $(x-a)$ is a factor of D and P
For example: $\quad f(x)=\frac{P(x)}{D(x)}=\frac{(x+1)(x+2)}{(x+1)}$
$x=-1$ is a zero of both D and P
But we can reduce:

$$
f(x)=\frac{(x+1)(x+2)}{(x+1)}
$$

Graphing Rational Functions - Example 8

- We found that a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Has a vertical asymptote at $x=a$ if $D(a)=0$ and $P(a) \neq 0$
But what happens if $P(a)=0$ AND $D(a)=0$ for the same a ?
By the Factoing Theorem since D and P are polynomials, we know $(x-a)$ is a factor of D and P
For example: $\quad f(x)=\frac{P(x)}{D(x)}=\frac{(x+1)(x+2)}{(x+1)}$
$x=-1$ is a zero of both D and P
But we can reduce:

$$
\begin{aligned}
& f(x)=\frac{(x+1)(x+2)}{(x+1)} \\
& f(x)=x+2
\end{aligned}
$$

Graphing Rational Functions - Example 8

- We found that a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Has a vertical asymptote at $x=a$ if $D(a)=0$ and $P(a) \neq 0$
But what happens if $P(a)=0$ AND $D(a)=0$ for the same a ?
By the Factoring Theorem since D and P are polynomials, we know $(x-a)$ is a factor of D and P
For example: $\quad f(x)=\frac{P(x)}{D(x)}=\frac{(x+1)(x+2)}{(x+1)}$
$x=-1$ is a zero of both D and P
But we can reduce:

$$
\begin{aligned}
& f(x)=\frac{(x+1)(x+2)}{(x+1)} \\
& f(x)=x+2
\end{aligned}
$$

Except undefined for $x=-1$

Graphing Rational Functions - Example 8

- We found that a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Has a vertical asymptote at $x=a$ if $D(a)=0$ and $P(a) \neq 0$
But what happens if $P(a)=0$ AND $D(a)=0$ for the same a ?
By the Factoring Theorem since D and P are polynomials, we know $(x-a)$ is a factor of D and P
For example: $\quad f(x)=\frac{P(x)}{D(x)}=\frac{(x+1)(x+2)}{(x+1)}$
$x=-1$ is a zero of both D and P
But we can reduce:

$$
\begin{aligned}
& f(x)=\frac{(x+4)(x+2)}{(x+1)} \\
& f(x)=x+2
\end{aligned}
$$

Except undefined for $x=-1$
Except at $x=-1, f(x)$ is a line
So, we know how to graph this

Graphing Rational Functions - Example 8

- We found that a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Has a vertical asymptote at $x=a$ if $D(a)=0$ and $P(a) \neq 0$
But what happens if $P(a)=0$ AND $D(a)=0$ for the same a ?
By the Factoring Theorem since D and P are polynomials, we know $(x-a)$ is a factor of D and P
For example:

$$
f(x)=\frac{P(x)}{D(x)}=\frac{(x+1)(x+2)}{(x+1)}
$$

$x=-1$ is a zero of both D and P But we can reduce:

$$
\begin{aligned}
& f(x)=\frac{(x+1)(x+2)}{(x+1)} \\
& f(x)=x+2
\end{aligned}
$$

Except undefined for $x=-1$
Except at $x=-1, f(x)$ is a line So, we know how to graph this

Graphing Rational Functions - Example 8

- We found that a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Has a vertical asymptote at $x=a$ if $D(a)=0$ and $P(a) \neq 0$
But what happens if $P(a)=0$ AND $D(a)=0$ for the same a ?
By the Factoing Theorem since D and P are polynomials, we know $(x-a)$ is a factor of D and P
For example:

$$
f(x)=\frac{P(x)}{D(x)}=\frac{(x+1)(x+2)}{(x+1)}
$$

$x=-1$ is a zero of both D and P But we can reduce:

$$
\begin{aligned}
& f(x)=\frac{(x+4)(x+2)}{(x+1)} \\
& f(x)=x+2
\end{aligned}
$$

Except undefined for $x=-1$
Except at $x=-1, f(x)$ is a line So, we know how to graph this Except $f(x)$ is undefined at $x=-1$

